- 相關推薦
人工智能總結報告
總結就是對一個時期的學習、工作或其完成情況進行一次全面系統的回顧和分析的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來,為此要我們寫一份總結。但是卻發現不知道該寫些什么,下面是小編收集整理的人工智能總結報告,供大家參考借鑒,希望可以幫助到有需要的朋友。
人工智能總結報告1
一、 研究領域
在大多數數學科中存在著幾個不同的研究領域,每個領域都有著特有的感興趣的研究課題、研究技術和術語。在人工智能中,這樣的領域包括自然語言處理、自動定理證明、自動程序設計、智能檢索、智能調度、機器學習、專家系統、機器人學、智能控制、模式識別、視覺系統、神經網絡、agent、計算智能、問題求解、人工生命、人工智能方法、程序設計語言等。
在過去50多年里,已經建立了一些具有人工智能的計算機系統;例如,能夠求解微分方程的,下棋的,設計分析集成電路的,合成人類自然語言的,檢索情報的,診斷疾病以及控制控制太空飛行器、地面移動機器人和水下機器人的具有不同程度人工智能的計算機系統。人工智能是一種外向型的學科,它不但要求研究它的人懂得人工智能的知識,而且要求有比較扎實的數學基礎,哲學和生物學基礎,只有這樣才可能讓一臺什么也不知道的機器模擬人的思維。因為人工智能的研究領域十分廣闊,它總的來說是面向應用的,也就說什么地方有人在工作,它就可以用在什么地方,因為人工智能的最根本目的還是要模擬人類的思維。參照人在各種活動中的功能,我們可以得到人工智能的領域也不過就是代替人的活動而已。哪個領域有人進行的智力活動,哪個領域就是人工智能研究的領域。人工智能就是為了應用機器的長處來幫助人類進行智力活動。人工智能研究的目的就是要模擬人類神經系統的功能。
二、 各領域國內外研究現狀(進展成果)
近年來,人工智能的研究和應用出現了許多新的領域,它們是傳統人工智能的延伸和擴展。在新世紀開始的時候,這些新研究已引起人們的更密切關注。這些新領域有分布式人工智能與艾真體(agent)、計算智能與進化計算、數據挖掘與知識發現,以及人工生命等。下面逐一加以概略介紹。
1、分布式人工智能與艾真體
分布式人工智能(distributed ai,dai)是分布式計算與人工智能結合的結果。dai系統以魯棒性作為控制系統質量的標準,并具有互操作性,即不同的異構系統在快速變化的環境中具有交換信息和協同工作的能力。
分布式人工智能的研究目標是要創建一種能夠描述自然系統和社會系統的精確概念模型。dai中的智能并非獨立存在的概念,只能在團體協作中實現,因而其主要研究問題是各艾真體間的合作與對話,包括分布式問題求解和多艾真體系統(multiagent system,mas)兩領域。其中,分布式問題求解把一個具體的求解問題劃分為多個相互合作和知識共享的模塊或結點。多艾真體系統則研究各艾真體間智能行為的協調,包括規劃、知識、技術和動作的協調。這兩個研究領域都要研究知識、資源和控制的劃分問題,但分布式問題求解往往含有一個全局的概念模型、問題和成功標準,而mas則含有多個局部的概念模型、問題和成功標準。
mas更能體現人類的社會智能,具有更大的靈活性和適應性,更適合開放和動
態的世界環境,因而倍受重視,已成為人工智能以至計算機科學和控制科學與工程的研究熱點。當前,艾真體和mas的研究包括理論、體系結構、語言、合作與協調、通訊和交互技術、mas學習和應用等。mas已在自動駕駛、機器人導航、機場管理、電力管理和信息檢索等方面獲得應用。
2、計算智能與進化計算
計算智能(puting intelligence)涉及神經計算、模糊計算、進化計算等研究領域。其中,神經計算和模糊計算已有較長的`研究歷史,而進化計算則是較新的研究領域。在此僅對進化計算加以說明。
進化計算(evolutionary putation)是指一類以達爾文進化論為依據來設計、控制和優化人工系統的技術和方法的總稱,它包括遺傳算法(genetic algorithms)、進化策略(evolutionary strategies)和進化規劃(evolutionary programming)。它們遵循相同的指導思想,但彼此存在一定差別。同時,進化計算的研究關注學科的交叉和廣泛的應用背景,因而引入了許多新的方法和特征,彼此間難于分類,這些都統稱為進化計算方法。目前,進化計算被廣泛運用于許多復雜系統的自適應控制和復雜優化問題等研究領域,如并行計算、機器學習、電路設計、神經網絡、基于艾真體的仿真、元胞自動機等。
達爾文進化論是一種魯棒的搜索和優化機制,對計算機科學,特別是對人工智能的發展產生了很大的影響。大多數生物體通過自然選擇和有性生殖進行進化。自然選擇決定了群體中哪些個體能夠生存和繁殖,有性生殖保證了后代基因中的混合和重組。自然選擇的原則是適者生存,即物競天擇,優勝劣汰。
直到幾年前,遺傳算法、進化規劃、進化策略三個領域的研究才開始交流,并發現它們的共同理論基礎是生物進化論。因此,把這三種方法統稱為進化計算,而把相應的算法稱為進化算法。
3、數據挖掘與知識發現
知識獲取是知識信息處理的關鍵問題之一。20世紀80年代人們在知識發現方面取得了一定的進展。利用樣本,通過歸納學習,或者與神經計算結合起來進行知識獲取已有一些試驗系統。數據挖掘和知識發現是90年代初期新崛起的一個活躍的研究領域。在數據庫基礎上實現的知識發現系統,通過綜合運用統計學、粗糙集、模糊數學、機器學習和專家系統等多種學習手段和方法,從大量的數據中提煉出抽象的知識,從而揭示出蘊涵在這些數據背后的客觀世界的內在聯系和本質規律,實現知識的自動獲取。這是一個富有挑戰性、并具有廣闊應用前景的研究課題。
從數據庫獲取知識,即從數據中挖掘并發現知識,首先要解決被發現知識的表達問題。最好的表達方式是自然語言,因為它是人類的思維和交流語言。知識表示的最根本問題就是如何形成用自然語言表達的概念。
機器知識發現始于1974年,并在此后十年中獲得一些進展。這些進展往往與專家系統的知識獲取研究有關。到20世紀80年代末,數據挖掘取得突破。越來越多的研究者加入到知識發現和數據挖掘的研究行列。現在,知識發現和數據挖掘已成為人工智能研究的又一熱點。
比較成功的知識發現系統有用于超級市場商品數據分析、解釋和報告的
coverstory系統,用于概念性數據分析和查尋感興趣關系的集成化系統explora,交互式大型數據庫分析工具kdw,用于自動分析大規模天空觀測數據的skicat系統,以及通用的數據庫知識發現系統kdd等。
4、人工生命
人工生命(artificial life,alife)的概念是由美國圣菲研究所非線性研究組的蘭頓(langton)于1987年提出的,旨在用計算機和精密機械等人工媒介生成或構造出能夠表現自然生命系統行為特征的仿真系統或模型系統。自然生命系統行為具有自組織、自復制、自修復等特征以及形成這些特征的混沌動力學、進化和環境適應。
人工生命所研究的人造系統能夠演示具有自然生命系統特征的行為,在“生命之所能”(life as it could be)的廣闊范圍內深入研究“生命之所知”(life as we know it)的實質。只有從“生命之所能”的廣泛內容來考察生命,才能真正理解生物的本質。人工生命與生命的形式化基礎有關。生物學從問題的頂層開始,把器官、組織、細胞、細胞膜,直到分子,以探索生命的奧秘和機理。人工生命則從問題的底層開始,把器官作為簡單機構的宏觀群體來考察,自底向上進行綜合,把簡單的由規則支配的對象構成更大的集合,并在交互作用中研究非線性系統的類似生命的全局動力學特性。
人工生命的理論和方法有別于傳統人工智能和神經網絡的理論和方法。人工生命把生命現象所體現的自適應機理通過計算機進行仿真,對相關非線性對象進行更真實的動態描述和動態特征研究。
人工生命學科的研究內容包括生命現象的仿生系統、人工建模與仿真、進化動力學、人工生命的計算理論、進化與學習綜合系統以及人工生命的應用等。比較典型的人工生命研究有計算機病毒、計算機進程、進化機器人、自催化網絡、細胞自動機、人工核苷酸和人工腦等。
三、 學了人工智能課程的收獲
(1)了解人工智能的概念和人工智能的發展,了解國際人工智能的主要流派和路線,了解國內人工智能研究的基本情況,熟悉人工智能的研究領域。
(2)較詳細地論述知識表示的各種主要方法。重點掌握了狀態空間法、問題歸約法和謂詞邏輯法,熟悉語義網絡法,了解知識表示的其他方法,如框架法、劇本法、過程法等。
(3)掌握了盲目搜索和啟發式搜索的基本原理和算法,特別是寬度優先搜索、深度優先搜索、等代價搜索、啟發式搜索、有序搜索、a*算法等。了解博弈樹搜索、遺傳算法和模擬退火算法的基本方法。
(4)掌握了消解原理、規則演繹系統和產生式系統的技術、了解不確定性推理、非單調推理的概念。
(5)概括性地了解了人工智能的主要應用領域,如專家系統、機器學習、規劃系統、自然語言理解和智能控制等。
(6)基本了解人工智能程序設計的語言和工具。
四、 對人工智能研究的展望
對現代社會的影響有多大?工業領域,尤其是制造業,已成功地使用了人工智能技術,包括智能設計、虛擬制造、在線分析、智能調度、仿真和規劃等。金融業,股票商利用智能系統輔助其分析,判斷和決策;應用卡欺詐檢測系統業已得到普遍應用。人工智能還滲透到人們的日常生活,cad,cam,cai,cap,cims等一系列智能產品給大家帶來了極大的方便,它還改變了傳統的通信方式,語音撥號,手寫短信的智能手機越來越人性化。
人工智能還影響了你們的文化和娛樂生活,引發人們更深層次的精神和哲學層面的思考,從施瓦辛格主演的《終結者》系列,到基努.里維斯主演的《黑客帝國》系列以及斯皮爾伯格導演的《人工智能》,都有意無意的提出了同樣的問題:我們應該如何看待人工智能?如何看待具有智能的機器?會不會有一天機器的智能將超過人的智能?問題的答案也許千差萬別,我個人認為上述擔心不太可能成為現實,因為我們理解人工智能并不是讓它取代人類智能,而是讓它模擬人類智能,從而更好地為人類服務。
當前人工智能技術發展迅速,新思想,新理論,新技術不斷涌現,如模糊技術,模糊--神經網絡,遺傳算法,進化程序設計,混沌理論,人工生命,計算智能等。以agent概念為基礎的分布式人工智能正在異軍突起,特別是對于軟件的開發,“面向agent技術”將是繼“面向對象技術”后的又一突破。從萬維網到人工智能的研究正在如火如荼的開展。
五、 對課程的建議
(1) 能夠結合現在最新研究成果著重講解重點知識,以及講述在一些研究成果中人工智能那些知識被應用。
(2) 多推薦一些過于人工智能方面的電影,如:《終結者》系列、《黑客帝國》系列、《人工智能》等,從而增加同學對這門課程學習的興趣。
(3) 條件允許的話,可以安排一些實驗課程,讓同學們自己制作一些簡單的作品,增強同學對人工智能的興趣,加強同學之間的學習。
(4) 課堂上多講解一些人工智能在各個領域方面的應用,以及著重闡述一些新的和正在研究的人工智能方法與技術,讓同學們可以了解近期發展起來的方法和技術,在講解時最好多舉例,再結合原理進行講解,更助于同學們對人工智能的理解。
人工智能總結報告2
電影《人工智能》,一個未來版的皮諾曹式故事。David—一個有思想、有感情的小機器人,他被一對人類父母—Henry和Monica所收養。突然有一天,Henry和Monica的親生兒子Martin從昏迷中醒來。而Monica對于親生兒子和機器人養子中作出了選取。
David被人類父母拋棄后,一向認為是自己被拋棄的原因是自己不是一個有血肉的人,他渴望著自己能由一個機器人變成一個真真正正的人。抱著對這個愿望的執著,David展開了漫長的歷程。
在描述David經歷的故事中,我們能夠看到幾個不一樣的機器人主角。
每種機器人都代表自己的作用,但卻無法被人類接納到生命當中存在。與David一同被困機器屠宰場的破舊機器人,當中有仆人、工人、看門人的'打扮,能夠看出以前作用于生活和生產。那些破舊機器人中都以前出色過,但當有更新更先進的型號推出時,它們即被毫無疑問地丟棄,最終被人類徹底銷毀。
Joe,機器情人,為人類的生理需求服務,懂得分析人類心理變化。Teddy,玩具熊機器人,只會作為寵物主角的邏輯思考。Joe和Teddy能夠被人類作為一種寄托,Joe甚至能讀懂人類的情緒,但始終不被人類所在乎,最終也只能說出“我以前存在”。
David,新研發的高仿真機器人,能脫離數據計算而用感情思考,懂得愛別人,被人類收養。在Martin蘇醒前,Henry和Monica一向嘗試去接納這個機器人兒子,直至Martin康復回來發生了一些事情。Monica卻放下了接納機器人做兒子,正因機器人的外表甚至內在無論多么像人類,本質卻是機器人。
David的創造者對于創造David的想法是,嘗試去做一個會去愛的機器人,而成功之后就是與David同類機器人量產化的開始。由電影的開端時,我們已經看出故事里的社會背景不存在屬于機器人存在的空間。每種機器人的出現也是為了人類的需要,只能作為工具的本質。即使造出所謂的“愛”,也無法和人類的愛產生共鳴。
更具諷刺的是,David最終只能讓電影里代表高級生命體的外星人幫忙他達成被愛的愿望。而這個時候,地球上的人類已經滅絕了。透過電影這樣比較隱晦的描述,我們感受到的是,人類到了滅絕仍無法接納機器人到自己的愛當中。
或者我們不必深化到去思考人與機器人的關聯,拉近到我們的周圍,在現實生活的社會中,不正是有人像電影里的人類對待機器人一般去對待他人嗎?
【人工智能總結報告】相關文章:
關于人工智能的作文:人工智能改變生活02-20
人工智能作文08-23
人工智能心得12-01
人工智能的歌詞12-14
人工智能作文(精選)05-17
人工智能作文12-13
人工智能作文11-15
人工智能作文【經典】06-06
人工智能的作文11-30
人工智能征文05-26