【優秀】《圓的面積》教學設計
在教學工作者實際的教學活動中,通常需要用到教學設計來輔助教學,教學設計是實現教學目標的計劃性和決策性活動。我們應該怎么寫教學設計呢?以下是小編為大家整理的《圓的面積》教學設計 ,歡迎閱讀與收藏。
《圓的面積》教學設計 1
教學目標:
1.知識目標:經歷圓面積計算公式的推導過程,掌握圓面積計算公式。
2.能力目標:能正確運用圓的面積計算公式計算圓的面積
3. 情感目標:體會轉化的數學思想方法,初步感受極限的思想。
教學重點:
探索并掌握圓的面積公式,能正確計算圓的面積。
教學難點:
理解圓的面積公式的推導過程。
教學準備:
圓的面積公式的推導圖。
一、復習導入
1.提問:長方形的面積是什么?圓的面積是什么?
復習學過的圖形面積公式,圓的面積該怎樣計算?
3.引入:今天這節課我們來研究圓的面積是如何計算的。
(板書:圓的面積)
二、探究新知
1.教學例7。
(1)初步猜想:圓的面積可能與什么有關?說說你猜想的依據。
(2)圓的面積和半徑或直徑究竟有著怎樣的關系呢?
(3)實驗驗證:
出示例7第一幅圖。思考:
、倌銣蕚湓鯓訑?與同學交流。
②圖中正方形的面積和圓的半徑有什么關系?
估計一下圓的面積大約是正方形面積的幾倍。
(4)指導完成第一幅圖的計算和填空。
同桌合作,按照同樣的方法進行計算并填表
2.交流歸納:觀察上面的表格,你有什么發現?
小結:圓的面積是半徑平方的3倍多一些。
3.教學例8。
(1)談話:以前我們是怎樣推導出平行四邊形的面積呢?那么圓能不能轉化成學過的圖形?
(2)操作體驗:把117頁上半部分剪下來,按16等份剪開,再拼一拼,看看能什么圖形。
(3)提問:拼成的圖形像什么圖形?(拼成了一個近似的平行四邊形。)
(4)初步想象:如果把圓平均分成32份,也用類似的方法拼一拼,想一想,拼成的圖形與前面的圖形相比有怎樣的變化?
教師演示后進一步想象:如果將圓平均分成64份、128份,也用類似的`方法拼一拼。閉上眼睛想一想,隨著份數的增加,拼成的圖形會越來越接近一個什圖形?(長方形)
(5)交流后,教師出示推導圖。拼成的長方形與原來的圓有什么聯系?在小組中討論交流。
(6)在集體交流中借助圖示小結:長方形的面積與圓的面積相等;長方形的寬
是圓的半徑:長方形的長是圓周長的一半。
(7)追問:如果圓的半徑是r,長方形的長和寬應該怎樣表示?根據長方形面積的計算方法,怎樣來計算圓的面積?
(8)根據學生的回答,得出圓的面積公式。(教師板書)
(9)追問:知道圓的什么條件,就可以根據圓的面積公式計算圓的面積了?
(10)完成練一練。
4.教學例9。
(1)出示例9,提問:有沒有在生活中見過自動旋轉噴水器?
(2)想象一下自動噴水器旋轉一周后噴灌的地方是什么圖形,噴水的最遠的距離是什么意思。
(3)學生獨立完成計算。
(4)指導算術方法和代入法兩種方法的注意事項。
三、課堂小結
通過今天的學習,你有什么收獲?
四、布置作業
完成練習十五第1、3、4題。
《圓的面積》教學設計 2
教學內容分析:
圓的面積是學生認識了圓的特征、學會計算圓的周長以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。由于以前所學圖形的面積計算都是直線圖形面積的計算,而像圓這樣的曲邊圖形的面積計算,學生還是第一次接觸到,所以具有一定的難度和挑戰性。教學關鍵之處在于學生通過觀察猜想、動手操作、計算驗證,自主探索、推導出圓的面積公式并能靈活應用圓的面積公式解決實際問題。因此本課的教學應緊緊圍繞“轉化”思想,引導學生聯系已學知識把新知識納入已有知識中分析、研究、歸納,從而完成對新知的建構過程,建立數學模型,培養解決問題的綜合能力。
學生情況分析:
小學對幾何圖形的認識很大程度屬于直觀幾何的學習階段,而幾何本身比較抽象的。本節內容學生從認識直線圖形發展到認識曲線圖形,又是一次飛躍,但從學生思維角度看,五年級學生具有一定的抽象和邏輯思維能力。這一學段中的學生已經有了許多機會接觸到數與計算、空間圖形等較豐富的數學內容,已經具備了初步的歸納、類比和推理的數學活動經驗,并具有了轉化的數學思想。所以在教學應注意聯系現實生活,組織學生利用學具開展探索性的數學活動,注重知識發現和探索過程,使學生感悟轉化、極限等數學思想,從中獲得數學學習的積極情感,體驗和感受數學的力量。同時在學習活動中,要使學生學會自主學習和小組合作,培養學生解決數學問題的能力。
教學目標:
1、讓學生經歷操作、觀察、填表、驗證、討論和歸納等數學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數學模型。
2、讓學生進一步體會“轉化”的數學思想方法,感悟極限思想的價值,培養運用已有知識解決新問題的能力,增強空間觀念,發展數學思考。
3、讓學生進一步體驗數學與生活的聯系,感受用數學的方式解決實際問題的過程,提高學習數學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業紙。
教學過程:
一、創設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
。◤土晥A的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數學問題,讓學生體驗到數學來源于生活。】
二、猜想驗證、初步感知
1、實驗驗證
。1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
。2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數數圓的面積是多少。
師:數起來感覺怎么樣?有沒有更簡潔一點的方法?
。ㄒ龑W生發現可以先數出 個圓的方格數,再乘4就是圓的面積)
(讓學生在圖1中數一數,用計算器算一算,填寫表格里的第1行。)
圓的半徑
。╟m)
圓的面積
。╟m2)
圓的面積
。╟m2)
正方形的面積
(cm2)
圓的面積大約是正方形面積的幾倍
。ň_到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
(學生完成后交流匯報。)
師:仔細觀察表中的數據,你有什么發現?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的`3倍多一些。
小結:我們經過猜測——數方格——驗證,最終發現圓的面積是正方形面積也就是它半徑平方的3倍多一些。
【設計意圖:從學生熟悉的數方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經驗,從而為進一步探索圓的面積公式作好準備。由數方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性!
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
(引導學生發現,3倍多一些到底多多少還不清楚,需要繼續研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
。▽W生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
。ǚ謩e演示2等份、4等份、8等份,引導學生發現邊越來越直,剪拼的圖形越來越平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
。ㄒ龑W生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數越來越多。
。ㄒ龑W生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
【設計意圖:通過這一環節,滲透一種重要的數學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發現它的計算方法了。讓學生迅速回憶,調動原有的知識,為新知識的“再創造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數愈多,拼成的圖形就越接平行四邊形。在想象的過程中蘊含了另一個重要數學思想的滲透——極限思想!
。2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯系?將發現填寫在作業紙第2題中,然后小組內交流一下。
。ㄐ〗M討論,發現:長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
。ㄍㄟ^長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現在會求了嗎?
【設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數形結合的內在美,品嘗到成功的喜悅。】
四、解決問題、拓展應用
1、師:在日常生活中,經常會遇到與圓面積計算有關的實際問題。
(課件出示例9)
分析題意后學生獨立完成書本第105頁例9。
。ńM織交流,評價反饋)
2、完成作業紙第4題
師:接著看,默讀題目,完成作業紙第3題。
(學生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發現是我們在數學學習中探索未知領域時經常要用到的方法,用好它相信同學們會有更多的發現!
【設計意圖:全課總結不僅要重視學習結果的回顧再現,也要關注學習經驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。】
板書設計:
圓的面積
轉化
新的圖形學過的圖形
演示圖
長方形的面積=長×寬
圓的面積=圓周長的一半 × 半徑
S=πr×r
=πr2
。1)3.14×22(2)8÷2=4(cm)
=3.14×43.14×42
。12.56(cm2)=3.14×16
。50.24(cm2)
《圓的面積》教學設計 3
一、教學內容
北京市義務課程改革實驗數學教材第11冊
二、教學目標:
1.知識與技能:
使學生理解和掌握圓面積的計算公式,培養學生觀察、操作、分析、概括的能力以及邏輯推理能力。
2.過程與方法:
引導學生學會利用已有的知識,運用數學思想方法,推導出圓面積計算公式;滲透極限、轉化、化曲為直等數學思想方法。
3.情感態度價值觀:
培養學生認真觀察、深入思考,積極合作的良好品質。
三、教學重點:
通過合作探究活動,推導出圓面積公式。
四、教學難點:
理解轉化后的圖形各部分與圓各部分的關系。
五、教具學具準備:
圓形紙片多媒體
六、教學過程:
。ㄒ唬┣榫硨
出示:圓桌照片
師:通過前幾節課的學習,我們對圓已經有了一些認識,在我們的生活中圓也有著廣泛的應用,請看老師家里就有這樣一個圓桌,看到這個圓桌你能提出哪些與圓有關的數學問題?
生:圓桌一圈的長度是多少?圓桌桌面的面積是多少?
師:圓桌一圈的長度就是圓的周長,怎樣求圓的周長?
怎樣計算圓桌桌面的面積呢?這節課我們就一起來研究這個問題。
【設計意圖:根據“問題驅動式”教學模式的第一環節:創設情境,質疑激趣。教師創設了“看到這個圓桌你能提出哪些與圓有關的數學問題?”的情境引發學生提出問題,根據學生所提問題,明確本節課的學習任務】
。ǘ┖献魈骄
1、復習轉化方法:
師:想一想,我們都學過了哪些平面圖形的面積公式?(長方形、正方形、平行四邊形、梯形、三角形)
師:我們以平行四邊形為例,你還記得平行四邊形面積公式的推導過程嗎?(指名說、師投影演示)
師:在推導過程中,我們是根據以前學過圖形的面積公式推導出新圖形面積公式,這種方法對我們今天的學習有沒有幫助呢?
師:如果有的話,你打算把圓轉化成什么圖形呢?到底行不行呢?下面我們小組合作探究,請看活動要求:
1、圓轉化成了什么圖形?2、轉化后圖形的各部分與圓的各部分有什么關系?3、根據轉化后圖形面積公式試著推導出圓的面積公式。
2、小組合作探究,師巡視,指導。
【設計意圖:根據“問題驅動式”教學模式的第二環節:問題驅動,自主探究。
教師讓學生帶著3個問題進行自主探究的活動】
3、展示
預設:
學生方法1:將圓等分成(8份、16份、)拼成一個近似的平行四邊形,平行四邊形的底相當于圓周長的一半,上面的.底就是圓周長的另一半。平行四邊形的高相當于圓的半徑。圓周長的一半乘半徑就是圓面積的公式:∏r2。
學生方法2:將圓等分成若干份,拼成一個梯形或三角形。
學生方法3:用圓的一部分推出面積公式。(一個近似三角形的面積×份數)
板書:學生匯報的思路,即轉化后圖形各部分與圓各部分的關系,讓學生的理解更清晰。
【設計意圖:根據“問題驅動式”教學模式的第三環節:碰撞交流,研討辯論。教師讓學生在匯報過程中注意傾聽同伴的,如果有問題,讓學生再重復一遍,讓學生發現同學在匯報中存在的問題,互相提問、質疑、解決問題!
4、課件演示,體驗極限、化曲為直等數學思想。
5、資料介紹,感受數學文化,師:現在我們已經知道了圓面積的計算公式,根據老師給你的數學,現在你能算一算這個圓桌面的面積了嗎?(出示圓桌的照片,并給出圓桌的半徑是40厘米)
生:一人板書,其他學生本上練習。集體訂正。
6、知識性小結:
師:如果我們想計算圓的面積,必須知道什么條件?
生:半徑。
師:還可以知道什么,也能求出圓的面積?
生:圓的直徑或圓的周長?
師:怎么求?
【設計意圖:根據“問題驅動式”教學模式的第四環節:總結提升,納入認知。
教師根據本節課所學內容提出了第一個問題“如果我們想計算圓的面積,必須知道什么條件?”根據學生的回答,教師又適時地提出了第二個問題“還可以知道什么,也能求出圓的面積?”通過兩個問題的提出,讓學生不僅明確知道半徑可以求圓的面積,知道圓的直徑、周長也可以求圓的面積,進一步豐富學生計算圓面積的方法,提升學生的認知!
(三)解決問題:
1、口算下面各圓的面積。
2、填寫下表。
半徑直徑周長面積
2厘米
6厘米
6.28厘米
3、某公園里有一個邊長是10米的正方形嬉水池,正中間有一個人工噴泉,設計要求噴出的水不能落到水池以外。這個噴泉的噴水面積最大是多少平方米?
。ㄋ模┤n總結
板書設計:圓的面積
轉化平行四邊形面積=底×高
聯系圓的面積=×r=×r
=πr×r=πr2
公式S=πr2
《圓的面積》教學設計 4
教學內容浙教版小學數學第十一冊教材P141—143、例1
教材分析《圓的面積公式》這部分內容是在學生初步認識了圓,學習了圓的周長,以及學過幾種常見直線幾何圖形面積的基礎上進行教學的。學生從學習直線圖形的面積,到學習曲線圖形的面積,不論是內容本身還是研究方法,都是一次質的飛躍。學生掌握了圓面積的計算,不僅能解決簡單的實際問題,也為以后學習圓柱、圓錐的知識打下基礎。教材首先提出圓面積的概念,接著提出如何把圓轉化成已學過的圖形來計算面積的問題。把未知的問題轉化成已知的問題,是常用的數學思想和方法。讓學生用這種數學思想和方法來解決新的比較復雜的問題。教材采用實驗的方法,把圓平均分成若干份,再拼成一個近似長方形,然后由長方形的面積公式推導出圓面積計算公式。
學情分析在之前,學生已認識了各種平面圖形的特征以及學會了三角形、平行四邊形及梯形面積的推導方法,知道可以利用剪拼的方法把要學的圖形轉化成已學過的圖形,然后研究兩者間的關系,從而推導出公式,并已滲透轉化的'思想,為學習圓面積公式的推導找到了學習的方法。而且讓學生動手剪拼進行操作活動,使學生了解圖形之間的聯系,既能加深對圖形性質的認識,又能發展學生的認知能力。
教學目標
1.理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.能夠利用圓面積公式進行計算。
3.培養學生動手操作、觀察分析、概括推理的能力。
教學重點圓面積計算公式的推導和利用公式進行正確計算。
教學難點極限思想的滲透與圓面積公式的推導過程。
教學準備多媒體課件、 圓的平面圖形1個、剪刀、直尺等
教學過程
一、創設情境
1.播放錄像:美麗的校園景色、各種形狀的花壇。
問:你能計算出它們的占地面積嗎?
2.媒體演示(從各種形狀的花壇中提煉出下面的圖形)。
(1)學生說出這些圖形的面積計算公式。
。2)用什么方法推導出三角形面積計算公式的?
教師板書:
剪拼
要學的圖形 已學的圖形
轉化
3.媒體出示圓形。
今天要學習圓的另一個知識,就是圓占平面的大小叫圓的面積。(請學生摸一摸哪里是圓的面積?)
(板書課題:圓的面積)
二、公式推導
1.提出問題,制定方案
。1)小組討論:對于圓我們前面已經學習了什么?圓與以前我們研究的平面圖形有什么不同?你想通過什么方法推導圓的面積公式?你認為你面臨最大的困難是什么?
。2)小組匯報:
a.不同之處:圓是由一條封閉曲線圍成的平面圖形,而以前學過的平面圖形都是由幾條線段圍成的封閉圖形。
b.面臨的困難:如何曲線變直線。
2.操作實驗,分析問題
。1)學生動手實驗、剪拼圖形。(允許學生根據發現的規律結合課本內容分組合作完成圓面積計算公式的推導)。
。2)交流匯報。
、賹W生匯報剪拼過程,同時教師貼示。
、谟^察思考(教師有意選取一組剪拼成長方形的來交流)
a.拼成的圖形像什么圖形?為什么說它像長方形而不是長方形?
b.誰有辦法把邊變得更直些?把這個近似長方形變得更近似長方形?
。ń處熋襟w演示)
c.把圓分成64等分后,拼接后的圖形它的邊會怎么樣?圖形會怎么樣?
d.生閉眼想象:如果把圓面等分成128份,256份……一直這樣下去分成很多很多份,剪拼后的圖形是什么情形?
3.推導公式,解決問題
。1)觀察討論
當圓轉化成近似長方形時,你們發現它們之間有什么聯系?
。2)學生填實驗報告。
(3)學生交流匯報推導過程。
。4)觀看課件演示過程,并請同桌兩位同學互說一次。
三、公式應用
1.簡介千古絕技:中國古代數學家的割圓術。
公元3世紀我國數學家劉徽推算出圓周率時采用的"割圓術"。這種以直代曲,用有限逼近無限的數學思想就是我國古代數學家的首創……
2.解答引入時花壇占地面積(若設計一個自動旋轉噴灌裝置應裝在哪兒?)。
3.根據下面所給的條件,求圓的面積。
。1)直徑10厘米(2)周長12。56
(生獨立解答,思考(2)面積和周長相等嗎?做了這些題目你有什么體會?)
四、課堂總結
1.這節課你學會了什么?
2.這節課你有什么感受?
五、課外拓展
1.媒體出示:學,F有一塊長方形土地(長50米、寬25米),打算在上面建造一個圓形體育館,最大可以占地多少平方米?
2.已知正方形的面積是25平方厘米,求圓的面積。如圖:
3.一支森林考察隊發現了一顆要3人才能合圍的大樹,現要算出這棵大樹的橫截面(圓形)面積,怎么辦?(探討哪一種測量法合理簡潔)
板書設計
圓的面積
圓所占平面的大小叫圓的面積。
長方形的面積 = 長 × 寬
圓的面積 = πr × r = πr2
。ㄖ荛L的一半)
剪拼
要學的圖形 已學的圖形
轉化
《圓的面積》教學設計 5
一、教材分析
《圓的面積》,是北師大版六年制小學數學第十一冊第一單元中的內容,這是一節推導與計算相結合來研究幾何形體的教學內容,它是在學生學習了平面圖形的面積計算和圓的初步認識以及圓的周長的基礎上進行教學的。是幾何知識的一項重要內容,為以后學習圓柱、圓錐等知識作了鋪墊。
二、學情分析
在學習本課內容前,學生已經認識了圓,會求圓的周長,在學習長方形、平行四邊形、三角形、梯形等平面圖形的面積時,已經學會了用割、補、移等方式,把未知的問題轉化成已知的問題,因此教學本課時,可以引導學生用轉化的方法推導出圓的面積公式。
三、教學目標(課件)
(1)理解圓的面積含義,推導出圓面積計算的公式,并會用公式計算圓的面積。
。2)進一步培養學生樹立和運用轉化的思想,初步滲透極限思想,培養學生的觀察能力和動手操作能力。
。3)注重小組合作培養學生互相合作、互相幫助的優秀品質及集體觀念。
基于以上的教學目標確定教學重點:掌握圓面積的計算公式;弄清拼成的圖形各部分與原來圓的關系。
教學難點:是圓面積計算公式的推導和極限思想的滲透;
四、學情分析
為了突出重點、突破難點,培養學生的探究精神和創新精神,本課教學以“學生發展為本,以活動探究為主線,以創新為主旨”:主要采用了以下4個教學策略:
1、知識呈現生活化。以草坪中間的自動噴灌龍頭為草坪噴水為主線,讓學生提出問題讓生活數學這一條主線貫穿于課的始終。
2、學習過程活動化。讓學生在操作活動中探究出圓的面積計算公式。
3、學生學習自主化。讓學生通過動手操作、自主探究、合作交流的學習方式去探究圓的面積計算公式。
4、學習方法合作化。在探究圓的面積計算公式中采用4人小組合作學習的方法。從而真正實踐學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
五、教學過程
本著“將課堂還給學生,讓課堂煥發生命的活力”的指導思想,我將教學過程擬訂為“創設情境,激趣引入——引導探究,構建模型——分層訓練,拓展思維——總結全課,布置作業”四個環節進行,努力構建自主創新的課堂教學模式。
(一)創設情境,激趣引入
數學來源于生活,有趣的生活情境,能激發學生好奇心和強烈的求知欲,讓學生在生動具體的情境中學習數學,從而使教材與學生之間建立相互包容、相互激發的關系。讓學生既認識了自身,又大膽而自然地提出猜想。在課的一開始,我設計了“自動噴水頭澆灌草地得出一個半徑是5米的圓”這一情境(課件),讓學生在情境中尋找有用的數學信息并提出數學問題(課件),在思考“噴水頭轉動一周可以澆灌多大面積”的過程中,讓學生在具體情境中了解圓的面積的含義,體會計算圓的面積的必要性,并引發研究圓的面積的興趣,為下一環節做好鋪墊。
。ǘ┮龑骄,構建模型
第二環節是課堂教學的'中心環節,為了做到突出重點,突破難點,我安排了啟發猜想,明確方向————化曲為直,掃清障礙————實驗探究,推導公式————展示成果,體驗成功————首尾呼應,鞏固新知五大步進行:
第一步:啟發猜想,明確方向。
鼓勵學生進行合理的猜想,可以把學生的思維引向更為廣闊的空間。因此,在第一步:啟發猜想,明確方向中。我啟發學生猜想(課件):“比較兩個圓誰的面積大,你覺得圓的面積和哪些條件有關?怎樣推導圓的面積計算公式呢?”對于第一個問題,學生通過觀察比較,很自然的會作出合理猜想。但對于怎樣推導圓的面積計算公式這個問題,學生根據已有知識,或許能想到將圓轉化為以前學過的圖形,再求面積。至于如何轉化,怎樣化曲為直,因受知識的限制,學生不能準確說出。我抓住這一有力契機,進入下一步教學。
第二步:化曲為直,掃清障礙。
首先借助多媒體課件將大小相等的圓分別沿半徑剪開,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,讓學生通過觀察比較,發現平均分的份數越多,分成的近似等腰三角形的底就越接近于線段(課件)。這一規律的發現,不僅向學生滲透了極限的思想,更重要的是為學生徹底掃清了“轉化”的障礙。這時我適時放手,進入下一步教學。
第三步:實驗探究,推導公式。
首先提出開放性問題:你能不能將圓拼成以前學過的圖形,試著剪一剪,拼一拼,想一想,議一議拼成的圖形的各部分與原來的圓有什么關系?能不能推導出圓的面積計算公式?這里,我沒有硬性規定讓學生拼出什么圖形,而是放開手腳讓學生拿出已分成16等份的圓形卡紙小組合作去剪,去拼擺,并鼓勵學生拼擺出多種結果,從而培養了學生的發散思維和創新能力。
第四步:展示成果,體驗成功。
在學生小組討論后,引導學生進入第四步教學,為學生創設一個展示成果,體驗成功的機會。讓學生向全班同學介紹一下自己是如何拼成近似的平行四邊形或長方形或三角形或梯形的,如何推導出圓的面積計算公式的。然后由學生自己,同學和教師給予評價。同時對拼成近似長方形的情況,教師再結合多媒體的直觀演示,并結合板書。
(課件)首先讓學生明確圓周長的一半相當于這個近似長方形的長,半徑等于寬,圓的面積等于長方形的面積,這是教學的關鍵,再此基礎上進行推導(課件),得出圓面積等于周長的一半乘半徑,再讓學生弄清圓周長的一半等于πr,從而得到圓的面積計算公式化簡后用字母表示為S=πr2。
第五步:首尾呼應,鞏固新知
在學生獲得圓的面積計算公式后,“龍頭最多能噴灌多大草坪呢”?求出它的面積。從而達到了對新知的鞏固。
六、分層訓練,拓展思維
為了深化探究成果,在第三環節:分層訓練,第一層:基本性練習,第二層:綜合性練習,第三層:發展性練習。實現層層深入,由淺入深。逐步訓練學生思維的靈活性和深刻性,并使學生深刻體會到“數學來源于生活,并為生活服務”的道理。
第一層:基本性練習
1、求下面各個圓的面積。(課件出示)
(1)半徑為3分米;
。2)直徑為10米。
。3)周長為13厘米。
第二層:綜合性練習
2、一張圓桌的桌面直徑是1.5米,油漆師傅要在圓桌面的邊上貼一圈鋁合金,并在正面漆上油漆。請問,油漆師傅要買多長的鋁合金,油漆的面積有多大?
第三層:發展性練習
3、王大伯想用31.4米長的鐵絲在后院圍一個菜園,要使面積大一些,該圍成正方形好還是圓形好呢?你能當回小參謀嗎?
4、一塊正方形草坪,邊長10米、草坪中間的自動噴灌龍頭的射程是5米。
。1)這個龍頭最多可噴灌多大面積的草坪?
。2)噴灌后至少可剩下的面積有多大?
七、評價和反思
這節課緊緊抓住了教學重點,通過多媒體課件的演示,以及學生的動手操作,把一個圓通過分、剪、拼等過程,轉化為一個近似的長方形,從中發現圓和拼成的長方形的聯系,這種從多角度思考的教學理念,既溝通了新舊知識的聯系,又激發了學生的求知欲,并培養了學生探索問題的能力。
《圓的面積》教學設計 6
教學內容:
人教版六年級上冊教材第67~68頁《圓的面積》例1及練習十六的第1~3題。
教學目標:
1、使學生理解圓面積的計算公式與推導過程,并能運用其公式正確、靈活的計算。
2、在教學活動中,通過操作、合作交流,培養學生遷移、分析、合作和創新的能力,發展學生的空間觀念。
3、使學生掌握轉化的數學思想方法,并將所學知識運用于生活實際。教學重、難點:
重點:
正確計算圓的面積。
難點:
圓面積公式的推導。
教學準備:
配置的學具袋里的學具、彩筆、一把剪刀,圓形的紙片和若干材料紙。教學過程:
一、創設情境,生成問題。
1、出示牧羊圖,讓學生想一想它吃最大的范圍應該有多大呢?是什么形狀?
2、現在你想提什么數學問題?
揭示課題:圓的面積
二、探索交流,解決問題。
1、認識圓的面積
a、什么是圓的面積呢?
b、出示一個圓片:圓的面積在哪里?請同學們拿出圓片,用手摸一摸,感受一下圓的面積,你想說什么?
c、圓的大小主要與哪些因素有關?(半徑、直徑、周長)
出示結語:圓所占平面的大小叫做圓的面積
回憶一下:我們以前學平行四邊形、三角形、梯形的面積計算公式時都是用什么方法推導出來的?(引導轉化)
2、生生互動,推導公式
圓可轉化為哪一個學過的圖形呢?小組可以折一折、畫一畫、剪一剪、拼一拼,試試看!
1)、小組討論:設計方案,并匯報。
a、讓學生拿出卡紙(1),觀察卡紙(1)上的圓被分成多少等分,圓被轉化成什么圖形呢?
b、讓學生拿出卡紙(2),觀察卡紙(2)上的圓被分成多少等分,圓又被轉化成什么圖形呢?
那么,有沒有什么辦法讓它的邊變得更直呢?再剪幾份,你是說把它分得更多份些,是嗎?(可以把它分得更多份些)
c、請拿出手中的圓片試著折一折,展開來,看看你折成了幾等份?如果再折下去可以嗎?現在就把你們折的這幾種方案。(八等份、十六等份、三十二等份)
d、觀察這三種分法,比較一下,同樣大小的圓平均分的份數不同,拼出來的圖形有什么變化?
發現:平均分的份數越多,拼成的圖形越接近長方形。
e、轉化成長方形,推導圓的面積公式。
動手實踐:沿著半徑把圓切開,巧妙地把圓拼成了近似的長方形,現在我們可以利用長方形的面積公式來推導圓的面積公式。
小組合作探究,動手擺一擺,邊觀察、邊討論、邊推導,看哪組表現最好。展現以下問題:
、匍L方形的長相當于圓的'()?
、陂L方形的寬相當于圓的()?
、坶L方形的面積相當于圓的()?
④因為長方形的面積=()
所以圓的面積=()。
2)、小組討論后,并演示公式推導的全過程。
3)、揭示字母公式() 。
小結:可見要求圓的面積只要知道什么就行?(半徑)
3、運用公式學習例1。
學生獨立完成,全班交流展示。
三、鞏固應用,內化提高。
1、課本第69頁做一做第1題
學生獨立完成,匯報方法。
2、完成基本練習(做一做)
四,回顧整理,反思提升。
1、這節課我們發現了什么、學會了什么?
2、希望同學們在今后的學習中更好地運用好轉化的方法去學習更多的數學知識。
《圓的面積》教學設計 7
一、教材內容:
本節課內容是求圓的面積
二、教學目標:
知識目標:
、乓龑W生通過觀察了解圓的面積公式的推導過程
、茙椭鷮W生掌握圓的面積公式,并能應用公式解決實際問題、
能力目標:使學生了解從“未知”到“已知”的轉化過程,逐漸培養學生的抽象思維能力。
情感目標:通過實例引入,讓學生體驗數學來源于生活,又服務于生活;向學生展示生動、活潑的數學天地,喚起學生學習數學的興趣,使全體學生積極參與探索,在參與中體驗成功的樂趣。
三、教學重點難點:
重點:圓的面積公式的推導過程以及圓的面積公式的應用。
難點:在圓的面積公式推導過程中,學生對圓的無限平均分割,“弧長”無限的接近“線段”的理解以及將圓轉化為長方形時,長方形的長是圓的周長的一半的.理解。
四、教學流程
1、復習遷移,做好鋪墊
師問:
(1)長方形面積公式
(2)平行四邊形面積公式
師:平行四邊形面積公式的求法是借住誰來推導出來的?
2、創設情景,引入課題
用多媒體出示:一只小牛被它的主人用一根長2米的繩子栓在草地上,問小牛能夠吃草的面積有多大?
問題:
。1)小牛能夠吃草的最大面積是一個什么圖形?
。2)如何求圓的面積呢?
3、師生互動,探索新知
。1)師:平行四邊形面積可以轉化成長方形面積,那么圓的面積該怎么辦呢?
。2)讓學生動手操作:
教師將課前準備好的圓分給各小組(前后四人為一組)。請同學們試試看,將圓轉是否可以化成我們已學過的圖形,并求出它的面積。
。3)讓學生轉化的過程進行展示。(略)(多組學生展示)
。4)用多媒體進行驗證。
讓學生閉起眼睛想一想是不是分得的份數越多拼成的圖形越接近于長方形。
師:若把圓平均分得的份數越多,拼成的圖形就越接近于一個長方形,它的面積也就越接近了這個長方形的面積。
。5)引導歸納:
思考1:既然圓的面積無限接近于長方形。那么我們如何根據長方形的面積來推導圓的面積公式呢?
思考2:長方形的長、寬與圓有什么關系呢?
再次多媒體展示動畫。
師:若圓的半徑為r,則圓的周長為2πr,從而得出長方形長=πr,寬=r,即:圓的面積=長方形的面積=長×寬=πr×r
得到:s圓=πr×r
師:要求圓的面積必須知道什么條件?若不知半徑必須先求出半徑再求出圓的面積。
4、實際應用,強化新知
。1)利用公式解決實際問題:求小牛吃草的最大面積是多少?
師:強調書寫格式:a寫出公式b代入數字c計算結果d寫出單位。
(2)出示例題:
例題1:已知一個圓的直徑為24分米,求這個圓的面積?
a、讓學生獨立練習,b、指名板演,c、師生評議。
例2、一個圓形花壇,周圍欄桿的長是25、12米,這個花壇的種植面積是多少?(π≈3、14)
a、學生獨立練習,b、指名板演,c、師生訂正。
師:引導學生對三道題進行分析比較,歸納出求圓的面積方法。
5、鞏固練習,深化新知
1、判斷題
。1)圓的半徑擴大到原來的3倍,圓的面積也擴大到原來的3倍。()
。2)半徑為2厘米的圓的周長與面積相等。()
2、把邊長為2厘米的正方形剪成一個最大的圓,求這個圓的面積。
3、一塊直徑為20厘米的圓形鋁板上,有2個半徑為5厘米的小孔,這塊鋁板的面積是多少
6、課內總結,梳理新知
師:(1)本節所學的主要公式是什么?
(2)如果求圓的面積,必須知道什么量?
(3)已知圓的周長、圓的直徑是否也可以求圓的面積呢?如何求。
7、布置作業
略
《圓的面積》教學設計 8
一、內容簡介及設計理念
本節課是在學生充分認識了圓的各部分的特征和掌握了園的周長的計算的基礎上進行教學的。通過對圓面積的研究,使學生初步掌握研究曲線圖形的基本方法,為以后學習圓柱的表面積打下基礎。本課的教學要求主要是幫助學生理解和掌握圓面積的計算公式,培養學生觀察、操作、分析、概括等能力。
本節課設計了三次探究活動,第一次探究活動,通過折一折和剪拼把圓轉化成已經學過的三角形和平行四邊形,得到了解決問題的思路。第二次探究活動,圍繞著“怎樣使折出的圖形更像三角形”、“使剪拼后的圖形更像平行四邊形”這些問題開展操作、想象活動,充分體驗了“極限思想”。
第三次探究活動,學生借助數字、字母、符號等,運用數學的思維方式進行思考,推導出圓的面積計算公式。
二、教學目標:
1、經歷圓的面積計算公式的推導過程,掌握圓的面積計算公式。
2、能正確運用圓的面積計算公式計算圓的面積。
3、在探究圓的面積計算公式的過程中,體會轉化的數學思想方法;初步感受極限的思想。
三、教學重點和難點:
圓的面積計算公式的推導。
四、教學準備:
圓形紙片、剪刀、多媒體課件等。
五、教學過程:
教學過程教師活動學生活動
一、談話引入,揭示課題
二、探究新知。
1、第一次探究,明確思路,體會“轉化”的數學思想方法
2、第二次探究,明確方法,體驗“極限思想”
3、第三次探究,深化思維,推導公式。
4、解決問題
5、小結
三、知識應用(出示一個圓)大家看,這是什么圖形?
師:你已經掌握圓的哪些知識?
師:關于圓你還想探討什么?
(板書課題:圓的面積。)
師:誰能摸一摸這個圓片的面積。
師:那這個圓的面積怎么求呢?(學生沉默),請你在大腦中搜索一下,以前我們研究一個圖形的面積時,用到過哪些好的方法?
師:那圓能不能轉化成我們學過的圖形呢?請大家利用手中的圓紙片,先想一想,再動手試一試,然后在小組內交流一下。(教師巡視[【評析】“圓”作為一種由曲線圍成的圖形,與學生頭腦中熟悉的由直線段圍成的圖形(如長方形、平行四邊形等)差別比較大,因此當老師提出“怎么求圓的面積呢”,學生感到很茫然。此時,學生最渴望得到老師的'指點。作為教師,如何施展自己的“點金”術,取決于教師的教學理念。
在這里,老師沒有直截了當地講“方法”,而是從培養學生的解題能力入手,引導學生從頭腦里檢索已有的知識和方法:“以前我們研究一個圖形時,用到過哪些好的方法?”這樣設計,既在學生迷茫時指明了思考的方向和方法,又讓學生把“圓”這個看似特殊的圖形(用曲線圍成的圖形)與以前學過的圖形(用直線段圍成的圖形)有機地聯系起來了,溝通了知識之間的聯系,促成了遷移。
師:好,同學們停一停。剛才老師發現有的小組已經有想法了。我看你們小組的想法就很好,誰代表小組上來說一說?大家認真聽,看看他們是怎么想的。
師:噢,你想把圓轉化成我們學過的三角形來求它的面積。
師:誰還有不同的方法?
師:這像我們學過的什么圖形?
師:你想把圓轉化成平行四邊形來求它的面積,是不是?
師:剛才同學們有了兩種思路,可以把圓折一折,想轉化成三角形,還可以通過剪拼把圓轉化成平行四邊形,不論哪種方法,都是把圓轉化成學過的圖形來求它的面積。(板書:轉化[【評析】通過第一次探究,學生產生了兩種很有價值的思路。即通過折一折,把圓轉化成近似的三角形;通過剪拼把圓轉化成近似的平行四邊形。教師設計了“你們發現這兩種方法的共同點了嗎”這一關鍵問題,旨在引導學生通過回顧反思,達到滲透“轉化”這一數學思想方法的目的。]。)
師:同學們剛才也發現了,不管是折出的圖形,還是剪拼出的圖形,都不是很像三角形,怎樣讓它更接近這些圖形呢?是不是得進一步研究。請每個小組在兩種思路中選擇一種繼續研究。
師:各個小組都研究出結果了,誰想先來展示一下?請你們小組先說。
師:為什么要折這么多份?
師:你們同意嗎?這就是把圓折成16份時其中的一份(貼在黑板上),和剛才平均分成4份中的一份相比,確實像三角形了。如果想讓折出的形狀更接近三角形,怎么辦?
師:你繼續折給大家看看。(學生折起來很費勁)看來同學們再繼續折紙有困難了,老師在電腦上給大家演示一下。這是同學們剛才把圓平均分成16份的形狀(課件演示“正十六邊形”),這一份看起來像是三角形了,F在我們再把它平均分成32份,有什么變化?(課件演示,并突出其中一份的形狀。)
師:你發現了什么?
師:如果分的份數再多呢?請大家閉上眼睛想象一下,如果把圓平均分成64份、128份……分的份數越來越多,那其中的一份會是什么形狀?
師:同學們,用這個方法,成功地把求圓的面積轉化成求三角形的面積,你們的方法真好。有不一樣的方法嗎?(一個小組迫不及待地舉手想發言)請你們小組派個代表展示你們的成果。
師:這個方法還真不錯,這個小組把圓剪成8份(把這個小組的作品貼在黑板上),和剛才剪成4份拼成的圖形相比,有什么變化呢?
師:能讓拼成的圖形更接近于平行四邊形嗎?
師:哪個小組分的份數更多?
。ń處熥屃硪唤M展示自己平均分成16份后拼成的圖形。)
師:和前兩次拼成的圖形比,又有什么變化?
師:如果要讓拼成的圖形比它還接近于平行四邊形,怎么辦?
師:我們讓電腦來幫忙。大家看,老師在電腦上把這圓平均分了32份,看拼成新的圖形,你有什么發現呢?(課件演示。)
師:把這圓平均分了64份,看拼成新的圖形呢?
《圓的面積》教學設計 9
教學內容:
義務教育課程標準實驗教科書第十一冊P67—68
教學目標:
1、認知目標
使學生理解圓面積的含義;掌握圓的面積公式,并能運用所學知識解決生活中的簡單問題。
2、過程與方法目標
經歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。
3、情感目標
引導學生進一步體會“轉化”的數學思想,初步了解極限思想;體驗發現新知識的快樂,增強學生的合作交流意識和能力,培養學生學習數學的興趣。
教學重點:
掌握圓的面積的計算公式,能夠正確地計算圓的面積。教學難點:理解圓的面積計算公式的推導。
學具準備:
相應課件;圓的面積演示教具
教學過程:
一、創設情境,導入新課
出示教材67頁的情境圖。
師:同學們,請看上面的這幅圖,從圖中你發現了什么信息?(學生觀察思考)
生1:我發現圖上有5個工人在鋪草坪。
生2:我發現花壇是個圓形。
師:哦,是個圓形。還有沒有?請仔細觀察。
生:我發現一個工人叔叔提出了一個問題。
師:這個問題是什么?
生:這個工人叔叔說“這個圓形草坪的占地面積是多少平方米?”
師:你們能幫他解決這個問題嗎?
師:求圓形草坪的占地面積也就是求圓的什么?
師:今天我們就一起來學習圓的面積。(板書課題:圓的面積)
[設計意圖:從主題圖入手,讓學生自己去發現問題,同時使學生感悟到今天要學習的內容與身邊的生活息息相關、無處不在,同時了解學習任務,激發學生學習的興趣。]
二、游戲激趣,理解圓面積的概念
師:同學們,我們先來玩個小小游戲,大家說好不好?游戲規則是這樣的:選出一名男同學和一名女同學,給圓涂上顏色,比一比,誰涂得快。(涂完后,師:同學們,你們有什么話要說嗎?)
生:這個游戲不公平?男同學涂的圓大,女同學涂的圓小。師:圓所占平面的大小叫做圓的面積
。ò鍟簣A所占平面的大小叫做圓的面積)
師:現在大家知道男同學為什么涂得慢了嗎?(引導學生說出男同學所涂的圓的面積大)
[設計意圖:通過涂色讓學生在充分直觀感知圓面積的基礎上,理解圓面積的含義。]
三、探究合作,推導圓面積公式
1、滲透“轉化”的數學思想和方法。
師:圓的面積怎樣計算呢?計算公式又是什么?你們想知道嗎?我們先來回憶一下平行四邊形的面積是怎樣推導出來?
生:沿著平行四邊形的高切割成兩部分,把這兩部分拼成長方形師:哦,請看是這樣嗎?(教師演示)。
生:是的,平行四邊形的底等于長方形的長,平行四邊形的高等于長方形的寬,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高。
師:同學們對原來的知識掌握得非常好。剛才我們是把一個圖形先切,然后拼,就轉化成別的圖形。這樣有什么好處呢?
生:這樣就把一個不懂的問題轉化成我們可以解決的問題。師:對,這是我們在學習數學的過程當中的一種很好的方法。今天,我們就用這種方法把圓轉化成已學過的圖形。
師:那圓能轉化成我們學過的什么圖形?你們想知道嗎?(想)
2、演示揭疑。
師:(邊說明邊演示)把這個圓平均分成16份,沿著直徑來切,變成兩個半圓,拼成一個近似的平行四邊形。
師:如果老師把這個圓平均分成32份,那又會拼成一個什么圖形?我們一起來看一看(師課件演示)。
師:大家想象一下,如果老師再繼續分下去,分的份數越多,每一份就會越小,拼成的圖形就會越接近于什么圖形?(長方形)
[設計意圖:通過這一環節,滲透一種重要的數學思想,那就是轉化的思想,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊知識解決新的問題。并借助電腦課件的演示,生動形象地展示了化曲為直的剪拼過程。]
3、學生合作探究,推導公式。
。1)討論探究,出示提示語。
師:下面請同學們看老師給的三個問題,請你們四人一組,拿出課前準備的學具拼一拼,觀察、討論完成這三個問題:
①轉化的過程中它們的發生了變化,但是它們的.不變?
、谵D化后長方形的長相當于圓的,寬相當于圓的?③你能從計算長方形的面積推導出計算圓的面積的公式嗎?嘗試用“因為?所以?”類似的關聯詞語。
師:你們明白要求了嗎?(明白)好,開始吧。
學生匯報結果,師隨機板書。
同學們經過觀察,討論,尋找出圓的面積計算公式,真了不起。
。2)師:如果圓的半徑用r表示,那么圓周長的一半用字母怎么表示?
。3)揭示字母公式。
師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2
(4)齊讀公式,強調r2=r×r(表示兩個r相乘)。
從公式上看,計算圓的面積必須知道什么條件?在計算過程中應先算什么?
[設計意圖:通過小組合作、討論使學生進一步明確拼成的長方形與圓之間的對應關系,有效地突破了本課的難點。]
4、公式運用,鞏固新知。
師:現在大家懂得計算圓的面積了嗎?我們來試試看。
四、應用公式,解決生活中的實際問題
師:接下來我們運用圓的面積計算公式來解決生活中的實際問題。
師:(出示教材第67頁的情境圖)這是剛才課前發現的問題。師:這道題你們能自己解決嗎?(讓學生嘗試自己解決問題,并指名板演。再讓學生說說是怎樣想的,然后教師小結:求圓的面積必須知道什么條件?)[設計意圖:學生已經掌握了圓面積的計算公式,可大膽放手讓學生嘗試解答,從而促進了理論與實踐的結合,培養了學生靈活運用所學知識解決實際問題的能力。]
五、練習反饋,擴展提高
1、一個圓形茶幾桌面的直徑是1m,它的面積是多少平方厘米?
2、小剛家門前有一棵樹,他很想知道這棵樹的橫截面的面積是多少,但是他又不想鋸掉,你們有什么辦法幫他嗎?
六、全課總結
同學們,這節課我們學習了哪些知識?你有什么收獲?
七、板書設計
圓的面積
圓所占平面的大小叫做圓的面積
長方形面積=長×寬
=半徑
S=πr×r
=πr2
《圓的面積》教學設計 10
教學目標:
1. 知識與技能:認識圓的面積,通過操作,引導學生探索推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2. 過程與方法:在探究圓面積計算公式的過程中,通過大膽猜想、動手操作等活動,激發學生參與整個課堂教學活動的學習興趣, 培養學生的合作意識和探究精神;通過學生討論交流,培養學生的分析、觀察和概括能力,進一步體會轉化的數學思想和方法,培養學生的遷移能力,發展學生的空間觀念。
3. 情感態度與價值觀:通過應用,讓學生體會數學的應用價值,體驗數學與生活的密切聯系,滲透轉化的數學思想和極限思想。
教學重點:推導圓面積計算公式,運用圓面積計算公式解決實際問題。
教學難點:理解圓的面積公式的推導過程。
教學準備:課件、圓形白紙、剪刀。
教學過程
一、創設情景,引入新課
1、出示主題情景圖:
、購膱D中你獲得哪些數學信息?
、谔釂枺骸斑@個圓形草坪的占地面積是多少平方米?” “占地面積”指什么?
2、說一說:什么叫圓的面積?
3、揭示課題:今天我們就來研究圓的.面積。(板書課題:圓的面積)
【設計意圖】:出示情境圖,把教學內容與生活有機結合起來,使學生從具體問題情境中抽象出數學問題,提高學生學習的積極性。
二、合作交流,探索新知
1、回顧舊知:
回顧以前學過的平面圖形面積公式是如何推導出來的?
指出:轉化的方法是我們學習數學新知識的一種很好而且很有用的思想和方法。轉化的目的是為了——將沒學過的圖形轉化成已學過的圖形。
【設計意圖】:通過知識回顧,激發學生學習的求知欲,強化數學學習的生活化。
2、思考:那么能不能把圓也轉化成已學過的圖形來計算它的面積呢?
3、合作探究:
。1)猜想
。2)動手操作,驗證猜想。
(3)匯報交流,展示成果(分層展示學生研究成果)。
【設計意圖】:通過活動,調動學生動手、動腦等多種感知覺參與活動,調動學生積極性、自覺性,培養學生觀察,比較和判斷思維的能力,培養學生合作交流的意識,應用知識間的轉化和聯系,進一步體會轉化的數學思想和方法,培養學生的遷移能力,發展學生的空間觀念。
4、借助網絡畫板制作的動態課件展示圓面積的推導過程。
展示不同的等份數拼成不同的平行四邊形,感受極限的思想。
【設計意圖】:通過對圓切拼的動畫演示,觀察不同等份數拼成的不同圖形,發現規律,讓學生感受極限思想。
5、推導圓面積公式。
①比較轉化后的圖形與圓,你發現了什么?
②全班交流,根據學生敘述板書:
長方形面積= 長 × 寬
圓的面積 =圓周長的一半 × 半徑
=Лr × r
=Лr
6、小結:圓的面積計算公式: S =Лr
【設計意圖】:通過轉化和對比,讓學生參與獲取知識的過程,在開放的學習氛圍中積極主動地投入到觀察、討論的學習交流,從而把發現知識的過程交給學生,動靜結合的呈現方式有利于學生的理解,有利于突破教學難點,對學生空間觀念的形成起到了十分重要的作業,有利于發展學生的空間想象能力。
7、知識應用、內化提高
(1)、 求下列圓的面積。(只列式不計算)
r=3cm
。2)、出示例1:例1:圓形花壇的直徑是20m,它的面積是多少平方米?
。1) 認真讀題,理解題意。
(2) 你認為怎樣解決這個問題?
。3) 學生嘗試獨立計算。
。4) 匯報解答過程及結果,集體評價。
【設計意圖】:讓學生運用新知識解決生活中的實際問題,體驗成功的喜悅。
四.聯系生活、拓展延伸
1、公園草地上一個自動旋轉噴灌裝置的射程是10米,它能澆灌的面積是多少?
2、把一個周長為18.84cm的長方形改圍成一個圓,圍成圓的面積是多少?
3、求下列圓的周長和面積。
r=2cm
4、求半圓的面積。
r=4cm
【設計意圖】:拓展延伸,讓學生體會到生活中處處有數學,真正體會數學的實用性。
5、回顧整理,全課總結
今天我們學到了哪些新知識?你有哪些收獲?
【設計意圖】:引導學生回顧學習過程,培養反思習慣,重視學生數學思想、方法的培養。
《圓的面積》教學設計 11
教學內容:
義務教育課程標準實驗教科書六年級上冊P67-68
教學目標:
1、讓學生經歷猜想、操作、驗證、討論和歸納等數學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決簡單的相關問題。
2、經歷圓的面積公式的推導過程,進一步體會“轉化”和“極限”的數學思想,增強空間觀念,發展數學思考。
3、感悟數學知識內在聯系的邏輯之美,體驗發現新知識的快樂,增強學生的合作交流意識和能力,培養學生學習數學的興趣。
教學重點:
掌握圓的面積計算公式,能夠正確地計算圓的面積。
教學難點:
理解圓的面積計算公式的推導。
教學過程:
一、回憶舊知、揭示課題
1、談話引入
前些日子我們已經研究了圓,今天咱們繼續研究圓。
2、畫圓
首先請同學們拿出你們的圓規在練習本上畫一個圓。
3、比較圓的大小
請小組內同學互相看一看,你們畫的圓一樣嗎?為什么有的同學畫的圓大一些,有的同學畫的圓小一些?看來圓的大小與什么有關?
4、揭示課題
我們把圓所占平面的大小叫做圓的面積。(出示課題)
二、動手操作,探索新知
1、確定策略,體會轉化
(1)明確研究問題
師:同學們都認為圓的面積與它的半徑有關,那么圓的面積和半徑究竟有怎樣的關系呢?這就是我們這節課要研究的問題。
。2)體會轉化
怎么去研究呢?這讓我想起了《曹沖稱象》的故事。同學們聽過曹沖稱象的故事嗎?誰能用幾句話簡單地概括一下這個故事?曹沖之所以能稱出大象的重量,你覺得關鍵在于什么?(把大象的'重量轉化成石頭的重量)
其實在我們的數學學習中我們就常常用到轉化的方法。請同學們在大腦中快速搜索一下,以前我們在研究一個新圖形的面積時,用到過哪些好的方法?
預設:
學生回憶平行四邊形、三角形、梯形的面積推導方法。
當學生說不上來時,老師提醒:比如,當我們還不會計算平行四邊形的面積的時候,是利用什么方法推導出了平行四邊形的面積計算公式呢?(割補法)
三角形和梯形的面積計算公式又是怎么推導出來的呢?(用兩個完全一樣的三角形或梯形拼成平行四邊形)(課件演示推導過程)
小結:
你們有沒有發現這些方法都有一個共同點?
(3)確定策略
那咱們今天研究的圓是否也能轉化成我們已經學過的圖形呢?(……)
如果我們也像推導三角形、梯形面積那樣用兩個完全相同的圓形拼一拼,你認為可能轉化成我們學過的圖形嗎?那怎么辦呢?(割補法)怎么剪呢?
①引導學生說出沿著直徑或半徑,把圓進行平均分;
、趲熓痉4等份、8等份的剪法和拼法;
2、明確方法,體驗極限
。1)學生動手操作16等份的拼法;
(2)比較每一次所拼圖形的變化;
。3)電腦演示32等份、64等份、128等份所拼的圖形,讓學生體驗分成的份數越多,拼成的圖形就越接近長方形。
3、深化思維,推導公式
。1)請同學們仔細觀察轉化后的長方形,它與原來的圓有什么聯系?(請同學們在小組內互相說一說)
。2)交流發現,電腦演示圓周長和長,半徑和寬的關系。
。3)多讓幾個學生交流轉化后的長方形和原來圓之間的聯系。
。4)根據長方形的面積公式推導圓的面積計算公式。
三、運用公式,解決問題
1、現在要求圓的面積是不是很簡單了?知道什么條件就可以求出圓的面積了?
出示主題圖求面積:這個圓形草坪的半徑是10m,它的面積是多少平方米?
2、判斷對錯:
(1)直徑是2厘米的圓,它的面積是12.56平方厘米。()
。2)兩個圓的周長相等,面積也一定相等。()
。3)圓的半徑越大,圓所占的面積也越大。()
。4)圓的半徑擴大3倍,它的面積擴大6倍。()
3、知道了半徑就可以求出圓的面積,那知道圓的周長能求出圓的面積嗎?
四、總結新知,深化拓展
1、小結:
通過剛才的研究同學們推導出了圓的面積計算公式,更重要的是大家運用轉化的方法把圓這個新圖形轉化成了我們已經學過的平行四邊形和長方形,以后大家遇到新問題都可以用轉化的方法嘗試一下。
2、拓展
在剪拼長方形的過程中,有同學產生了疑問,能不能把剪下來的小扇形拼成三角形或者是梯形呢?讓我們一起來看一下。(課件出示拼的過程)
那利用拼成的三角形和梯形又能推導出圓的公式嗎?有興趣的同學可以課后去剪一剪、拼一拼、想一想、算一算,相信你一定會有更多的收獲。
《圓的面積》教學設計 12
教學理念:
本課時是在學生掌握了直線圖形的面積計算的基礎上教學的,主要是對圓的面積計算公式進行推導,正確計算圓的面積。教學圓的面積時,教材首先通過圓形草坪的實際情境提出圓面積的概念,使學生在以前所學知識的基礎上理解“圓的面積就是它所占平面的大小”。
接著教材啟發學生尋找解決問題的思路和方法,回憶以前在研究多邊行的面積時,主要采用了割補、拼組等方法,將多邊行的面積轉化成更熟悉和更簡單的圖形來解決,那么,在這里也可以用轉化方法,讓學生嘗試運用以前曾多次采用過的“轉化”的數學思想,把圓的面積轉化為熟悉的直線圖形的面積來計算,引導學生推導圓面積的計算公式,再一次讓學生熟悉運用“轉化”這種數學思想方法來解決較復雜的問題的策略。教學時,還要讓學生認識到轉化是一種很重要的數學思想方法,在解決日常問題以及在科學研究中,人們常常就是把復雜轉化為簡單,未知轉化為已知、抽象轉化為具體等方式來處理的。
教學目標:
1、通過動手操作、認真觀察,讓學生經歷圓面積計算公式的推導過程,理解掌握圓面積公式,并能正確計算圓的面積。
2、學生能綜合運用所學的知識解決有關的問題,培養學生的應用意識。
3、利用已有知識遷移,類推,使學生感受數學知識間的聯系與區別。培養學生的觀察、分析、質疑、概括的能力,發展學生的空間觀念。
4、通過學生小組合作交流,互相學習,培養學生的合作精神和創新意識,提高動手實際和數學交流的能力,體驗數學探究的樂趣和成功。
教學重點:
運用圓的面積計算公式解決實際問題。
教學難點:
理解把圓轉化為長方形推導出計算公式的過程。
教學準備:
多媒體課件及圓的分解教具,學生準備圓紙片和圓形物品。
教學過程:
一、創設問題情境,激發學生學習興趣。
1、請同學們指出這些平面圖形的周長和面積,并說說它們的區別。
2、你會計算它們的面積嗎?想一想,我們是怎樣推導出它們面積的計算公式的?(電腦課件演示)
。墼O計意圖:創設問題情境,啟發學生回憶長方形、平行四邊形、三角形和梯形周長和面積的概念。再利用電腦課件演示,讓學生對已經學過的平面圖形面積公式的推導有更清晰的認識,從而激起學生從舊知識探索新知識的興趣,并明確思想方向,有利于學生想象能力的培養。]
二、合作交流,探究新知。
1、出示圓:
。1)讓學生說出圓周長的概念,并指出來。
。2)想一想:圓的面積指什么?讓學生動手摸一摸。
。ń沂荆簣A所占平面的大小叫做圓的面積。)
(3)對比圓的周長和面積,讓學生感受他們的區別。
同時引出課題——圓的面積。
[設計意圖:通過學生動手摸一摸,使學生能夠大膽地概括圓的面積,為開展學生想象力提供了廣闊的空間。另外,讓學生比較圓的周長和面積,讓學生充分感知圓面積的含義,為概括圓面積的意義打下良好的基礎。]
2、推導圓面積的計算公式。
(1)學生觀察書本P67主題圖,思考:這個圓形草坪的占地面積是多少平方米?也就是要求什么?怎樣計算一個圓的面積呢?
(2)剛才我們已經回顧了利用平移、割、補等方法推導平行四邊形、三角形和梯形的面積計算公式的方法,那能不能把圓也轉化成學過的圖形來計算?猜一猜,圓可以轉化成什么圖形來推導面積公式呢?你打算用什么方式進行轉化?
。墼O計意圖:通過提問,讓學生對圓的面積公式的推導先進行預測,引導學生大膽尋找求圓面積的方法,激發學生的創作靈感,提高學生的`求知欲望與探究興趣。]
。3)請各小組先商量一下,你們想拼成什么圖形,打算怎么剪拼,然后動手操作。
①分小組動手操作,把圓平均分成若干(偶數)等份,剪開后,拼成其他圖形,看誰拼得又快又好?
②展示交流并介紹:小組代表給大家介紹一下你們組拼出來的圖形近似于什么?是用什么方法剪拼的?為什么只能說是“近似”?能不能把拼出的圖形的邊變直一點?
。墼O計意圖:給學生充分的時間動手操作,放手讓學生自己動手把圓剪拼成各種圖形,鼓勵不同拼法,引導發揮聯想,讓學生通過比較得出沿半徑剪拼的方法是較為科學的。教學中注重對學生進行思維方法的指導,給學生提供了自行探究,創造性尋找解決問題的方法和途徑,讓學生在合作交流中獲取經驗,這一過程為學生提供了個體發展的空間,每個人有著不同的收獲和體驗。]
、郛攬A轉化成近似長方形時,你們發現它們之間有什么聯系?
課件演示:
師:現在,老師把圓平均分成16份,可以拼出這個近似長方形的圖。想象一下,如果平均分成64份、126份?又會是什么情形?
④小結:如果分的份數越多,每一份就會越小,拼成的圖形就會越接近于長方形。
[設計意圖:通過電腦課件演示,生動形象地展示了化圓為方,化曲為直的剪拼過程。使學生進一步明確拼成的長方形與圓之間的對應關系,有效地認識和理解圓轉化成長方形的演變過程。]
(4)以拼成的近似長方形為例,認真觀看課件,師生共同推導圓的面積計算公式。
、僖龑В寒攬A轉化成近似的長方形后,圓的面積與長方形面積有什么關系?并且指出拼出來的長方形的長和寬。
、陂L方形的長和寬與圓的周長、半徑有什么關系?如果圓的半徑是r,這個近似長方形的長和寬各是多少?如何根據已經學過的長方形的面積公式,推導出所要研究的圓的面積公式?
、蹖W生討論交流:長方形的長是圓周長的一半,即a=C/2=2πr/2=πr,寬是圓的半徑,即b=r。教師板書如下:
(5)小結:如果用S表示圓的面積,r表示圓的半徑,那么圓的面積計算公式就是。同學們通過大膽猜想和動手驗證,終于得到了圓面積的計算公式,老師祝賀大家取得成功!
。6)學生打開書本P68補充圓面積的計算公式的推導過程。思考:計算圓的面積需要什么條件?
。墼O計意圖:在推導過程中給學生創設討論交流的學習機會,通過觀看電腦課件的演示,引導式提問、試寫推導過程等不同形式,來調動學生參與學習的積極性,發揮學生的主體作用,培養了學生操作、觀察、分析、概括的能力。最后進行小結,鞏固學生對圓面積計算公式的認識。另外通過提出問題,強調學生計算圓面積時需要的條件。]
三、實踐運用,鞏固知識。
1、已知圓的半徑,求圓的面積。
判斷對錯:已知一個圓形花壇的半徑是5米,它的面積是多少平方米?
=314×5×2=314(米)
(學生先獨立思考,再匯報交流,共同修改。)
強調:半徑的平方是指兩個半徑相乘。
2、已知圓的直徑,求圓的面積。(教學例1)
①師:把第一題的“半徑是5米”改成“直徑是20米”,那么這個圓形花壇的面積又怎樣算呢?(小組合作交流,探討計算方法。)
、趯W生匯報計算方法,要強調首先算什么?
、鄞蜷_書本P68補充例1。
3、已知圓的周長,求圓的面積。(書本P70練習十六第3題)
小剛量得一棵樹干的周長是1256cm。這棵樹干的橫截面的面積是多少?
、僖龑釂枺阂髽涓傻臋M截面積,必須先求出樹干的什么?你打算怎樣求樹干的半徑呢?
、诟鶕䦂A的周長公式,師生間推導出求半徑的計算方法。
③學生獨立完成,教師巡查給于適當的指導。另外請兩位學生上臺板演,共同訂正,并且指出計算中容易出現錯誤的地方。
4、一個圓形溜冰場,半徑30米。
。1)這個溜冰場的面積是多少平方米?
。2)沿著溜冰場的四周圍上欄桿,欄桿長多少米?
提問:知道圓的半徑用什么方法求圓的面積?第(2)個問題求欄桿的長度也就是求這個圓形溜冰場的什么?用什么方法求圓的周長?
[設計意圖:學生已經推導出圓面積的計算公式,以上的四道題的作用是鞏固圓面積計算公式的運用,使學生對圓面積的計算方法有更深刻的理解。在練習時,大膽放手讓學生進行計算,同桌間合作探討,經過學生多次嘗試解答,使他們的觀察力、動手操作能力、想象力都能夠得到進一步的發展,從而促進了理論與實踐相結合,培養了學生靈活運用所學知識解決實際問題的能力。其中第3題通過周長求面積的計算和第4題知道圓的半徑求圓的面積和周長,讓學生體會到圓的周長和面積有著緊密的聯系和根本的區別,使新舊知識有更好的連接,并且讓學生感受到幾何圖形計算的靈活性。]
四、總結,拓展延伸。
1、今天我們學了什么知識?一起閉上眼睛回憶我們整節課的學習過程,你有什么感受啊?在計算圓的面積時有什么地方值得注意的?
2、在生活中還有很多關于圓面積的知識,老師出一個題目給同學們課后進行思考:有一個圓形花壇,中間建了一個圓形的噴水池,其他地方是草坪,求草坪的面積是多少?
《圓的面積》教學設計 13
教學內容: 圓的面積 教學目標:
1、知道圓的面積的含義,理解和掌握圓的面積的計算公式,能夠正確計算圓的面積。
2、理解圓的面積公式的推導過程,感受轉化的數學思想。
3、根據圓的半徑、直徑或周長來計算圓的面積,解決簡單的有關圓的面積計算的實際問題。
教學重難點:
重點:理解和掌握圓面積的計算方法。 難點:圓面積公式的推導。 準備:圓形紙片 教學過程:
一、談話引入
明確圓的面積的含義(在黑板上畫好一個圓),誰上來指一指:哪是這個圓的周長?(生用粉筆比劃圓的周長,強調起點即終點。)對于一個平面圖形除了研究它的周長,一般還可以研究它的什么?(面積)你能指出哪是這個圓的面積嗎?(生用手比劃)那么誰能說說什么叫做圓的面積呢?(引導學生用自己的話說一說,逐步規范:圓所占平面的大小叫做它的面積。)
導入課題:圓的面積
二、引導探究
1、猜測圓的面積與半徑的關系。 (1)猜測圓的面積與什么有關系?
。ㄔ诤诎迳显佼嬕粋小一點的圓)比一比,這兩個圓的面積哪個大一些?為什么?你認為圓的面積的大小與什么有關系?
(2)猜測圓的面積與半徑有什么關系?
正方形的面積是半徑的平方的4倍,圓的面積比正方形的面積要小。因此圓的面積可能是半徑的平方的3倍多,甚至有可能會想到圓周率是3.1415……
2、探究圓的面積與半徑的關系——公式推導 (1)回顧以前學過的平面圖形的面積推導過程。
A、長方形、正方形,直接用面積單位去量,找規律得到的;
B、平行四邊形、三角形、梯形等不能用面積單位去量。因為不能用面積單位去密鋪,用的是轉化的方法。
。2)統一認識,尋求轉化的方法
A、圓是曲線圖形,也不能用面積單位去密鋪,應該運用轉化的方法;
B、商討轉化的方法:剪開——化曲為直;沿半徑剪開——便于研究面積與半徑的關系。
。3)自主探究:剪一剪,拼一拼,找一找,推導出圓的面積計算公式。 A、拼成近似的長方形
同學們:請你以小組為單位,對照課本合作完成以下填空: (1)我們把圓分成若干等份,剪開后,拼成一個近似的( )形。 我們發現分成的份數越多,拼成的圖形就( )。 (2)拼成的( )形的面積與圓形面積是( )的。 長方形的( )相當于圓的( ); 長方形的( )相當于圓的( )。
長方形的長等于圓周長的一半( r)長方形的寬等于圓的半徑(r)
長方形的面積 = 長 × 寬
圓的面積 = 圓周長一半( r)×半徑(r)
S = π r2 B、拼成近似的三角形
三角形的面積=底×高÷2 圓的面積 =(圓周長的1/4) ×(4個半徑)4r÷2 C、拼成梯形的下去再探討 (4)交流,統一認識 A、公式:S=πr2
B、圓的面積與什么有關?回到課始的猜測。
三、總結
本節課你有什么收獲?
四、實踐
1、已知r=4cm,求S。
2、已知d=8cm,求S。
板書設計:
圓的面積
圓所占平面的大小叫圓的面積。
長方形的面積 = 長 × 寬
圓的面積 = πr × r = πr2
《 圓的面積》教學反思
濟瀆路 翟彩艷
圓是小學階段學習的最后一個平面圖形,學生認識直線圖形,到認識曲線圖形,不論是學習內容的本身,還是研究問題的方法,都有所變化,是學習上的一次飛躍。
通過對圓的研究,使學生認識到研究曲線圖形的基本方法,同時滲透了曲線圖形與直線圖形的關系。這樣不僅擴展了學生的知識面,而且從空間觀念來說,進入了一個新的領域。因此,通過對圓有關知識學習,不僅加深學生對周圍事物的理解,激發學習數學的興趣,也為以后學習圓柱,圓錐打下基礎。
一、感受圓的周長與面積的不同
本課開始,我先讓學生比較圓的.周長與圓的面積有什么不同,接著結合回憶平行四邊形的探究方法,引導學生發現“轉化”是探究新的數學知識、解決數學問題的好方法,為下面探究圓的面積計算的方法奠定基礎。
二、學具演示,激發探究
通過以前推導平行四邊形面積計算的方法,探究圓的面積。探究之前,我問學生:如何計算圓的面積?學生有點不知所措,F在回想起來,我不應該以上來就問如何計算圓的面積,而應該先讓學生猜測圓的面積可能與什么有關,當學生猜測出圓的面積可能與圓的半徑有關系時,這樣的引入可能更有利于學生解答出我的問題。接下來我讓學生把自己手中的小圖片分成若干小扇形,從8等份、16等份再到32等份,學生把扇形拼起來,從一個不規則圖形,到近似的一個長方形。再讓學生在這個長方形中找到圓的周長,找到圓的半徑。最后得到長方形的長就等于圓的周長的一半,而它的寬就是圓的半徑,最終推導出圓的面積公式。(遺憾的是學生自己制作的學具操作起來很不方便,既耽誤時間,又不規范,如果能統一配置學具那會更利于操作。)學生思維在交流中碰撞,在碰撞中發散,在想象中得以提升。思維的能動性和創造性得到充分激發,探索能力、分析問題和解決問題的能力得到了提高。但值得反思的是,我總是抱著一節課應該解決一個知識點的想法,所以為了趕時間,我總是更多的關注舉手發言的優等生,而很少注意學困生,沒給他們留有足夠思考時間,這是我今后課堂教學應該特別注意的地方。
三、分層練習,體驗運用價值
結合課本中的例題,我設計了基礎練習、提高練習兩個層次,從兩個不同的層面對學生的學習情況進行檢測。第一,基礎練習鞏固計算公式的運用,強調規范的書寫格式;第二,提高練習收集了身邊的實際內容,讓這節課所學的內容聯系生活,得到靈活運用。在每一道練習題的設置上,都有不同的目的性,我注重了每個練習的指導側重點。但在整個練習過程中我沒能做到充分發揮主導作用,體現學生的主體地位,引導學生自覺地
參與解決問題的過程中來。今后教學中應關注學生的參與程度,知識的掌握程度,促進學生主動發展,提高課堂教學效果。
在這一節課中,我總覺得操作學具時間短,我有點操之過急,只是讓學生草草地操作,更多的是通過自己的教具操作來引導學生觀察,比較、分析,發現圓的面積、周長、半徑和拼成的近似長方形面積、長、寬的關系,從而推導出圓的面積計算公式。學生的思維在交流中雖有碰撞,但總覺得不夠。在以后這一類的教學中,應該給學生足夠的思考空間和探索時間,使學生的思維的能動性和創造性得到充分激發,探索能力、分析問題和解決同題的能力得到充分提高。另外,在細節的設計還要精心安排。
《圓的面積》教學設計 14
教材分析:
圓是小學數學平面圖形教學中唯一的曲線圖形。本課是在學生了解和掌握了圓的特征、學會計算圓周長的計算以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。教材將理解“化曲為直”的轉化思想貫穿在活動之中。通過一系列的活動將新的數學思想納入到學生原有的認知結構之中,從而完成新知的建構過程。學好這節課的知識,對今后進一步探究“圓柱圓錐”的體積起著舉足輕重的作用。
【教學目標】
1、了解圓的面積的含義,經歷圓面積計算公式的推導過程,掌握圓面積計算公式。
2、能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。
3、在估一估和探究圓面積公式的活動中,體會“化曲為直”的思想,初步感受極限思想。
【教學重點】
探索并掌握圓的面積公式。
【教學難點】
探索推導圓的面積公式,體會“化曲為直”思想。
【教具準備】
投影儀,多煤體課件,圓形紙片。
【學具準備】
圓形紙片。
【教學設計】
一、創設情境。提出問題
。ㄍ队俺鍪緋16中草坪噴水插圖)這節課我們就來學習如何求噴水頭轉動一周澆灌的面積有多大。(板書:圓的面積)
二、探究思考。解決問題
1、估計圓面積大小
師:請大家估計半徑為5米的圓面積大約是多大?(讓同學們充分發揮自己感官,估計草坪面積大小)——————
2、用數方格的方法求圓面積大小
、偻队俺鍪緋16方格圖,讓同學們看懂圖意后估算圓的面積,學生可以討論交流。
②指明反饋估算結果,并說明估算方法及依據。
1、根據圓里面的正方形來估計
2、用數方格的方法來估計。
三、探索規律
1、由舊知引入新知
師:大家還記得我們以前學習的平行四邊形、三角形、梯形面積分別是由哪些圖形的面積來的嗎?(學生回答,教師訂正。那么圓形的面積可由什么圖形面積得來呢。
2、探索圓面積公式
師:拿出我們剪好的圖形拼一拼,看看能成為一個什么圖形?并考慮你拼成的圖形與原來的圓形有什么關系?(同學們開始操作,教師巡視)
指名匯報(學生在說的同時教師注意板書)
請大家來觀察一下剛才拼成的哪個圖形更接近長方形呢?[等分為32份的更接近長方形。]
想象一下,如果把一個圓等分的份數越多,拼成的圖形越接近什么圖形呢?[等分的份數越多,就越接近長方形。]
觀察黑板上的板書,你能否由平行四邊形或者長方形的面積公式得到圓形面積公式呢?并說出你的理由。(生說,教師板書)
因為拼成的平行四邊形的底也就是圓形周長的一半;平行四邊形的高就是圓形的半徑。而平行四邊形面積=底×高,那么圓形面積公式=圓周長的1/2×半徑即可。
因為拼成的長方形的長也就是圓形周長的'一半,長方形的寬就是圓形的半徑。而長方形面積=長×寬,那么那么圓形面積=圓周長的1/2×半徑即可。
用字母怎么表示圓面積公式呢?
s=∏rr還可以寫作s=∏r2
師:這說明求圓的面積只需要知道半徑即可,那我只告訴你們圓的直徑又如何求出圓的面積呢,請大家自己把這個公式寫出來。教師板書。
3、應用圓面積公式
根據下面的條件,求圓的面積。
r=6厘米d=0、8厘米r=1、5分米
師:現在請大家用圓面積公式計算噴水頭轉動一周可以澆灌多大面積的農田。(學生獨立解答,指名回答)
四:拓展應用
習題設計:
1、填空:
(1)圓的周長計算公式為(),圓的周長計算公式為()。
(2)一個圓的半徑是3厘米,求它的周長,列式(),求它的面積,列式()。
。ǎ常┮粋圓的周長是18.84分米,這個圓的直徑是()分米,面積是()平方分米。
。、判斷:
(1)半徑是2厘米的圓,周長和面積相等()[讓孩子知道得數雖然相同,但計量單位不同,不能進行比較。]
(2)一個圓形紐扣的半徑是1.5厘米,它的面積是多少?列式:3.14x1.52=3.14x3=9.42平方厘米。()。[此題在計算1.52的時候把1.52看作1.5x2,而1.52=1.5x1.5]
(3)直徑相等的兩個圓,面積不一定相等。()
。ǎ矗┮粋圓的半徑擴大3倍,面積也擴大3倍。()
(5)兩個不一樣大的圓,大圓的圓周率比小圓的圓周率大。()
。、實際應用:一塊圓形鐵板的半徑是3分米,它的面積是多少平方分米?
4、要求一張圓形紙片的面積,需測量哪些有關數據?比比看誰先做完,誰想的辦法多?
。1)可測圓的半徑,根據s=πr2求出面積。
。2)可測圓的直徑,根據s=π(d/2)2求出面積。
。3)可測圓的周長,根據s=π·(c/2π)2求出面積。
實踐練習:
圓形的物體生活中隨處可見,公園的露天廣場是個圓形,怎樣才能計算廣場的面積呢?[讓學生討論,你有哪些方案?并留給學生課后去實踐。這樣,使學生意猶未盡,感到課雖盡,但疑未了,為下一課已知周長求面積埋下伏筆。]
《圓的面積》教學設計 15
教學目標:
1.通過復習整理圓的性質、圓的周長和面積計算等重點知識,使學生所學的知識形成系統,能運用圓的知識熟練地解答圓的周長和面積的計算問題。
2.通過將圓的知識與其他知識進行整合,進一步提高學生解決問題和綜合應用的能力,發展學生的空間觀念。
3.在自主探究圓與正方形的關系的學習中,積累數學活動經驗,培養學生分析、概括的能力,感受數學學習的樂趣。
教學重點:能正確、熟練地進行圓周長和面積的計算。
教學難點:從探究活動過程中去發現圓與正方形之間的關系。
教學準備:課件,學具。
教學過程:
一、復習舊知,梳理體系
直接揭題:今天我們來復習本學期所學習的圓的有關知識──“圓的周長和面積復習課”(板書課題:圓的周長和面積復習課)
教師:我們已經學習了有關圓的知識,同學們還記得我們學習了圓的哪些知識嗎?
小組合作,讓同學們把所學的知識整理一下,然后進行匯報。
匯報交流,課件出示相關內容。
(1)圓的認識:
圓心O:決定圓的位置;
直徑d:決定圓的大小;
半徑r:在同一圓內,所有的半徑都相等,所有的直徑都相等,d=2r;
圓是軸對稱圖形,有無數條對稱軸。
(2)圓的周長:
圍成圓的曲線的長度叫圓的周長。
圓周率:周長與直徑的比,是個無限不循環小數。
圓周長的計算:。
(3)圓的面積:
由長方形的面積來推導出圓的面積,近似長方形的長相當于圓的周長的一半,寬相當于圓的半徑。
圓面積計算:。
圓環的面積:。
【設計意圖】通過小組交流合作,喚醒學生以前所學圓的有關知識,并在交流中進一步加深對圓的性質、圓的周長和面積的相關知識的.掌握和理解,通過梳理形成知識體系。
二、基本練習,整合知識
教師:剛才我們對本學期圓的相關知識進行了梳理,現在我們來看看下面幾個問題,你能回答嗎?
1.說說下面各題的最簡整數比:
(1)一個圓的半徑和直徑的比是多少?(1:2)
(2)一個圓的周長和直徑的比是多少?(:1)
(3)兩個圓的半徑分別是2 cm和3 cm,,它們的直徑比是多少?(2:3)
周長的比是多少?(2:3)
面積的比是多少?(4:9)
【設計意圖】將圓的知識和比的知識結合起來,體現了知識的綜合應用。并進一步理解圓的各部分知識之間的關系。
2.一個公園是圓形布局,半徑長1 km,圓心處設立了一個紀念碑。公園共有四個門,每兩個相鄰的門之間有一條筆直的水泥路相通,長約1.41 km。(課件出示題目情境)
(1)這個公園的圍墻有多長?
教師:請同學們思考,求公園的圍墻的長度就是求什么?該怎么求?(因為公園是一個圓形布局,所以求公園圍墻的長度就是求圓的周長,根據,=1 km,就能求出圓的周長是6.28 km。)
(2)北門在南門的什么方向?距離南門多遠?(引導學生觀察后得出,北門在南門的正北方向,距離南門的距離就是直徑的長度,是2 km。)
(3)如果公園里有一個半徑為0.2 km的圓形小湖,這個公園的陸地面積是多少平方千米?(引導學生用大圓面積減去小圓的面積來進行計算,也可以利用圓環的面積來計算這個公園的面積。)
(4)請你再提出一些數學問題并試著解決。(引導學生不僅可以從四個門的位置和方向去提出數學問題,也可以從圓和正方形的關系方面去提出數學問題并進行解決。)
【設計意圖】通過觀察平面圖,提高學生的讀圖能力,并融合用方向和距離確定位置的內容,強化學生的空間觀念;求公園的陸地面積其實就是圓環面積的變式,提升學生的知識遷移能力;通過學生提問題這樣一個開放式問題,提高學生應用能力。
三、探究學習,培養能力
1.用三張同樣大小的正方白鐵皮(邊長是1.8 m)分別按下面三種方式剪出不同規格的圓片。(課件出示問題情境)
(1)每種規格中的一個圓片周長分別是多少?(引導學生觀察每種規格的圓的周長之間的關系,及總周長之間的關系。)
(2)剪完圓后,哪張白鐵皮剩下的廢料多些?
教師:猜想一下剪完圓后哪一張白鐵皮剩下的廢料多些?你能用自己的方法來證明嗎?(引導學生用數據說理,通過計算,引導學生探究其中的一般性原理,假設第一個圓的半徑是,某種剪法中剪掉的小圓的半徑一定是,此時要剪掉個小圓,剪掉小圓的總面積為,即和第一個圓的面積相等。)
(3)根據以上的計算,你發現了什么?
【設計意圖】通過三種剪圓的方式判斷剩下的廢料是否相等的驗證過程,一方面提高學生的推理能力;另一方面,提高學生發現和提出問題、分析問題和解決問題的能力。
四、回顧總結,交流收獲
教師:說說這節課我們學習了什么?你有什么收獲或問題?
【設計意圖】通過回顧,理順各個知識點,讓學生明確學習了什么內容,反思自己對知識的掌握情況。
【《圓的面積》教學設計 】相關文章:
《圓的面積》教學設計02-07
[精選]《圓的面積》教學設計01-28
《圓的面積》教學設計06-19
圓的面積教學設計08-15
《圓的面積》經典教學設計01-21
圓的面積教學設計14篇02-27
圓的面積教學設計13篇03-03
圓的面積教學設計(14篇)03-03
圓的面積教學設計(13篇)03-05