- 相關推薦
中考數學必考三角函數的誘導公式
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等
k是整數sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α與-α的三角函數值之間的關系sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=cscα
csc(3π/2+α)=-secα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα
【中考數學必考三角函數的誘導公式】相關文章:
中考數學三角函數誘導公式06-28
數學三角函數誘導公式復習重點09-28
數學教案:三角函數的誘導公式06-28
高中數學三角函數的誘導公式教案06-28
數學誘導公式大集合06-28
小升初數學必考基礎運算公式精選06-27
數學三角函數公式06-27
初中數學公式三角函數公式06-28
高中數學常用的誘導公式06-29
高中數學誘導公式大全06-28