- 相關(guān)推薦
北大數(shù)據(jù)分析老鳥寫給學(xué)弟們一封信
以下是我在近三年做各類計量和統(tǒng)計分析過程中感受最深的東西,或能對大家有所幫助。當(dāng)然,它不是ABC的教程,也不是細(xì)致的數(shù)據(jù)分析方法介紹,它只 是“總結(jié)”和“體會”。由于我所學(xué)所做均甚雜,我也不是學(xué)統(tǒng)計、數(shù)學(xué)出身的,故本文沒有主線,只有碎片,且文中內(nèi)容僅為個人觀點,許多論斷沒有數(shù)學(xué)證明, 望統(tǒng)計、計量大牛輕拍。
關(guān)于軟件
于我個人而言,所用的數(shù)據(jù)分析軟件包括 EXCEL、SPSS、STATA、EVIEWS。在分析前期可以使用EXCEL進行數(shù)據(jù)清洗、數(shù)據(jù)結(jié)構(gòu)調(diào) 整、復(fù)雜的新變量計算(包括邏輯計算);在后期呈現(xiàn)美觀的圖表時,它的制圖制表功能更是無可取代的利器;但需要說明的是,EXCEL畢竟只是辦公軟件,它 的作用大多局限在對數(shù)據(jù)本身進行的操作,而非復(fù)雜的統(tǒng)計和計量分析,而且,當(dāng)樣本量達到“萬”以上級別時,EXCEL的運行速度有時會讓人抓狂。
SPSS是擅長于處理截面數(shù)據(jù)的傻瓜統(tǒng)計軟件。首先,它是專業(yè)的統(tǒng)計軟件,對“萬”甚至“ 十萬”樣本量級別的數(shù)據(jù)集都能應(yīng)付自如;其次,它是統(tǒng)計軟 件而非專業(yè)的計量軟件,因此它的強項在于數(shù)據(jù)清洗、描述統(tǒng)計、假設(shè)檢驗(T、F、卡方、方差齊性、正態(tài)性、信效度等檢驗)、多元統(tǒng)計分析(因子、聚類、判 別、偏相關(guān)等)和一些常用的計量分析(初、中級計量教科書里提到的計量分析基本都能實現(xiàn)),對于復(fù)雜的、前沿的計量分析無能為力;第三,SPSS主要用于 分析截面數(shù)據(jù),在時序和面板數(shù)據(jù)處理方面功能了了;最后,SPSS兼容菜單化和編程化操作,是名副其實的傻瓜軟件。
STATA與EVIEWS都是我偏好的計量軟件。前者完全編程化操作,后者兼容菜單化和編程化操作;雖然兩款軟件都能做簡單的描述統(tǒng)計,但是較之 SPSS差了許多;STATA與EVIEWS都是計量軟件,高級的計量分析能夠在這兩個軟件里得到實現(xiàn);STATA的擴展性較好,我們可以上網(wǎng)找自己需要 的命令文件(.ado文件),不斷擴展其應(yīng)用,但EVIEWS就只能等著軟件升級了;另外,對于時序數(shù)據(jù)的處理,EVIEWS較強。
綜上,各款軟件有自己的強項和弱項,用什么軟件取決于數(shù)據(jù)本身的屬性及分析方法。EXCEL適用于處理小樣本數(shù)據(jù),SPSS、 STATA、EVIEWS可以處理較大的樣本;EXCEL、SPSS適合做數(shù)據(jù)清洗、新變量計算等分析前準(zhǔn)備性工作,而STATA、EVIEWS在這方面 較差;制圖制表用EXCEL;對截面數(shù)據(jù)進行統(tǒng)計分析用SPSS,簡單的計量分析SPSS、STATA、EVIEWS可以實現(xiàn),高級的計量分析用 STATA、EVIEWS,時序分析用EVIEWS。
關(guān)于因果性
做統(tǒng)計或計量,我認(rèn)為最難也最頭疼的就是進行因果性判斷。假如你有A、B兩個變量的數(shù)據(jù),你怎么知道哪個變量是因(自變量),哪個變量是果(因變量)?
早期,人們通過觀察原因和結(jié)果之間的表面聯(lián)系進行因果推論,比如恒常會合、時間順序。但是,人們漸漸認(rèn)識到多次的共同出現(xiàn)和共同缺失可能是因果關(guān) 系,也可能是由共同的原因或其他因素造成的。從歸納法的角度來說,如果在有A的情形下出現(xiàn)B,沒有A的情形下就沒有B,那么A很可能是B的原因,但也可能 是其他未能預(yù)料到的因素在起作用,所以,在進行因果判斷時應(yīng)對大量的事例進行比較,以便提高判斷的可靠性。
有兩種解決因果問題的方案:統(tǒng)計的解決方案和科學(xué)的解決方案。統(tǒng)計的解決方案主要指運用統(tǒng)計和計量回歸的方法對微觀數(shù)據(jù)進行分析,比較受干預(yù)樣本與 未接受干預(yù)樣本在效果指標(biāo)(因變量)上的差異。需要強調(diào)的是,利用截面數(shù)據(jù)進行統(tǒng)計分析,不論是進行均值比較、頻數(shù)分析,還是方差分析、相關(guān)分析,其結(jié)果 只是干預(yù)與影響效果之間因果關(guān)系成立的必要條件而非充分條件。類似的,利用截面數(shù)據(jù)進行計量回歸,所能得到的最多也只是變量間的數(shù)量關(guān)系;計量模型中哪個 變量為因變量哪個變量為自變量,完全出于分析者根據(jù)其他考慮進行的預(yù)設(shè),與計量分析結(jié)果沒有關(guān)系。總之,回歸并不意味著因果關(guān)系的成立,因果關(guān)系的判定或 推斷必須依據(jù)經(jīng)過實踐檢驗的相關(guān)理論。雖然利用截面數(shù)據(jù)進行因果判斷顯得勉強,但如果研究者掌握了時間序列數(shù)據(jù),因果判斷仍有可為,其中最經(jīng)典的方法就是 進行“格蘭杰因果關(guān)系檢驗”。但格蘭杰因果關(guān)系檢驗的結(jié)論也只是統(tǒng)計意義上的因果性,而不一定是真正的因果關(guān)系,況且格蘭杰因果關(guān)系檢驗對數(shù)據(jù)的要求較高 (多期時序數(shù)據(jù)),因此該方法對截面數(shù)據(jù)無能為力。綜上所述,統(tǒng)計、計量分析的結(jié)果可以作為真正的因果關(guān)系的一種支持,但不能作為肯定或否定因果關(guān)系的最 終根據(jù)。
科學(xué)的解決方案主要指實驗法,包括隨機分組實驗和準(zhǔn)實驗。以實驗的方法對干預(yù)的效果進行評估,可以對除干預(yù)外的其他影響因素加以控制,從而將干預(yù)實施后的效果歸因為干預(yù)本身,這就解決了因果性的確認(rèn)問題。
關(guān)于實驗
在隨機實驗中,樣本被隨機分成兩組,一組經(jīng)歷處理條件(進入干預(yù)組),另一組接受控制條件(進入對照組),然后比較兩組樣本的效果指標(biāo)均值是否有差 異。隨機分組使得兩組樣本“同質(zhì)”,即“分組”、“干預(yù)”與樣本的所有自身屬性相互獨立,從而可以通過干預(yù)結(jié)束時兩個群體在效果指標(biāo)上的差異來考察實驗處 理的凈效應(yīng)。隨機實驗設(shè)計方法能夠在最大程度上保證干預(yù)組與對照組的相似性,得出的研究結(jié)論更具可靠性,更具說服力。但是這種方法也是備受爭議的,一是因 為它實施難度較大、成本較高;二是因為在干預(yù)的影響評估中,接受干預(yù)與否通常并不是隨機發(fā)生的;第三,在社會科學(xué)研究領(lǐng)域,完全隨機分配實驗對象的做法會 涉及到研究倫理和道德問題。鑒于上述原因,利用非隨機數(shù)據(jù)進行的準(zhǔn)實驗設(shè)計是一個可供選擇的替代方法。準(zhǔn)實驗與隨機實驗區(qū)分的標(biāo)準(zhǔn)是前者沒有隨機分配樣 本。
通過準(zhǔn)實驗對干預(yù)的影響效果進行評估,由于樣本接受干預(yù)與否并不是隨機發(fā)生的,而是人為選擇的,因此對于非隨機數(shù)據(jù),不能簡單的認(rèn)為效果指標(biāo)的差異 來源于干預(yù)。在剔除干預(yù)因素后,干預(yù)組和對照組的本身還可能存在著一些影響效果指標(biāo)的因素,這些因素對效果指標(biāo)的作用有可能同干預(yù)對效果指標(biāo)的作用相混 淆。為了解決這個問題,可以運用統(tǒng)計或計量的方法對除干預(yù)因素外的其他可能的影響因素進行控制,或運用匹配的方法調(diào)整樣本屬性的不平衡性在對照組中尋 找一個除了干預(yù)因素不同之外,其他因素與干預(yù)組樣本相同的對照樣本與之配對這可以保證這些影響因素和分組安排獨立。
隨機實驗需要至少兩期的面板數(shù)據(jù),并且要求樣本在干預(yù)組和對照組隨機分布,分析方法就是DID(倍差法,或曰雙重差分法);準(zhǔn)實驗分析用截面數(shù)據(jù)就 能做,不要求樣本在干預(yù)組和對照組隨機分布,分析方法包括DID(需兩期的面板數(shù)據(jù))、PSM(傾向性得分匹配法,需一期的截面數(shù)據(jù))和PSM- DID(需兩期的面板數(shù)據(jù))。從準(zhǔn)確度角度來說,隨機實驗的準(zhǔn)確度高于準(zhǔn)實驗和非實驗分析。
關(guān)于分析工具的選擇
如果根據(jù)理論或邏輯已經(jīng)預(yù)設(shè)了變量間的因果關(guān)系,那么就無需使用實驗方法。我對非實驗數(shù)據(jù)分析工具的選擇原則如下。
因變量為連續(xù)變量,自變量至少有一個連續(xù)變量,進行多元線性回歸;
因變量為連續(xù)變量,自變量全部為分類變量,進行方差分析;
因變量為分類變量,自變量至少有一個連續(xù)變量,使用Logit模型或Probit模型;
因變量為分類變量,自變量全部為分類變量,進行交叉表分析和卡方檢驗;
因變量在某個閉區(qū)間內(nèi)分布,并且有較多樣本落在閉區(qū)間的邊界上,使用Tobit模型;
因變量不唯一,如多產(chǎn)出問題,進行數(shù)據(jù)包絡(luò)分析(DEA);
因變量為整數(shù)、數(shù)值小、取零個數(shù)較多,使用計數(shù)(Count)模型;
數(shù)據(jù)具有層次結(jié)構(gòu)(嵌套結(jié)構(gòu)),使用多層線性模型(HLM)。
隨著統(tǒng)計和計量經(jīng)濟學(xué)的發(fā)展,各種前沿分析工具層出不窮,但我認(rèn)為最靠譜的分析工具不外乎以下四種:DID(針對隨機實驗),多元線性回歸,固定效 應(yīng)變截距模型(FE,針對面板數(shù)據(jù)),Logit模型或Probit模型(針對分類因變量數(shù)據(jù))。其他方法或適用條件苛刻,或分析過程折騰,或方法本身不 可靠(尤其是聚類分析、判別分析,超級不靠譜),因此能用以上四種方法分析問題時,不必為“炫方法”而瞎折騰。
關(guān)于擬合優(yōu)度、變量選擇原則及估計值絕對大小的意義
在人人的“數(shù)據(jù)分析”小站中,某同學(xué)提出這樣一個問題:“多元回歸分析中,怎么選擇自變量和因變量,可以使R方達到80%以上?”
很顯然,問這個問題的同學(xué)要么沒學(xué)好計量,要么就是犯了功利主義的錯誤,或者二者皆有。擬合優(yōu)度的大小很大程度上取決于數(shù)據(jù)本身的性質(zhì)。如果數(shù)據(jù)是 時序數(shù)據(jù),只要拿有點相關(guān)關(guān)系的變量進行回歸就能使擬合優(yōu)度達到80%以上,但這樣的高R方根本說明不了什么,很可能使分析者陷入偽回歸的陷阱,嚴(yán)謹(jǐn)?shù)淖?法當(dāng)然是做平穩(wěn)性檢驗和協(xié)整檢驗;如果是截面數(shù)據(jù),根本沒必要追求R方到80%的程度,一般來說,有個20%、30%就非常大了。
如果一定要增大R方,那么最應(yīng)該做的的確是對納入模型的變量進行選擇。選擇納入模型的原則我認(rèn)為有三條。第一,從理論和邏輯出發(fā),將可能影響因變量 的變量作為自變量納入模型,即理論上或邏輯上能影響因變量的自變量必須納入模型,即使該自變量的回歸系數(shù)不顯著。第二,奧姆剃刀原則如無必要,勿增實 體,即理論上或邏輯上不能影響因變量的自變量不能納入模型,即使該自變量的回歸系數(shù)顯著。第三,防止納入具有多重共線性的自變量。
前面說了,對截面數(shù)據(jù)進行計量分析,R方能達到20%、30%是非常了不起的事情。但是,如果擬合優(yōu)度(或類似擬合優(yōu)度的指標(biāo))在20%、30%或 更低時,回歸系數(shù)只具有定性或定序上的意義,強調(diào)其絕對數(shù)值的大小沒什么意義。譬如lnY=alnA+blnB+…+zlnZ+c 回歸的R方為20%,a 為0.375,b為0.224,且二者的T檢驗顯著,那么我們可以說,A、B對Y有影響,也可以說一百分點的A變化對Y的影響大于一百分點的B變化對Y的 影響(控制其他因素的情況下),但說一百分點的A變化對Y的影響較一百分點的B變化對Y的影響大0.151%,就沒什么意義了。
其他一些建議或忠告
用心思考變量間的因果關(guān)系:是A影響了B還是B影響了A?A、B之間是否真的有因果關(guān)系?是否存在C,使C既影響A又影響B(tài),而
[北大數(shù)據(jù)分析老鳥寫給學(xué)弟們一封信]相關(guān)文章:
1.北大數(shù)據(jù)分析老鳥寫給學(xué)弟們一封信
【北大數(shù)據(jù)分析老鳥寫給學(xué)弟們一封信】相關(guān)文章:
銷售數(shù)據(jù)的分析方法07-25
大數(shù)據(jù)分析07-20
數(shù)據(jù)分析報告07-28
大數(shù)據(jù)分析07-25
多維數(shù)據(jù)分析方法04-07
數(shù)據(jù)分析簡歷模板02-17
數(shù)據(jù)分析報告【推薦】03-07
【推薦】數(shù)據(jù)分析報告03-01