国产精品一久久香蕉产线看-国产精品一区在线播放-国产精品自线在线播放-国产毛片久久国产-一级视频在线-一级视频在线观看免费

橢圓知識點總結(jié)

時間:2022-06-24 01:32:53 總結(jié)范文 我要投稿

橢圓知識點總結(jié)

  總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,讓我們來為自己寫一份總結(jié)吧。但是卻發(fā)現(xiàn)不知道該寫些什么,以下是小編為大家收集的橢圓知識點總結(jié),僅供參考,歡迎大家閱讀。

橢圓知識點總結(jié)

橢圓知識點總結(jié)1

  知識點一橢圓的定義

  平面內(nèi)到兩個定點的距離之和等于常數(shù)(大于)的點的集合叫做橢圓。兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距。

  根據(jù)橢圓的定義可知:橢圓上的點M滿足集合,,且都為常數(shù)。

  當(dāng)即時,集合P為橢圓。

  當(dāng)即時,集合P為線段。

  當(dāng)即時,集合P為空集。

  知識點二橢圓的標(biāo)準方程

  (1),焦點在軸上時,焦點為,焦點。

  (2),焦點在軸上時,焦點為,焦點。

  知識點三橢圓方程的一般式

  這種形式的方程在課本中雖然沒有明確給出,但在應(yīng)用中有時比較方便,在此提供出來,作為參考:

  (其中為同號且不為零的常數(shù),),它包含焦點在軸或軸上兩種情形。方程可變形為。

  當(dāng)時,橢圓的焦點在軸上;當(dāng)時,橢圓的焦點在軸上。

  一般式,通常也設(shè)為,應(yīng)特別注意均大于0,標(biāo)準方程為。

  知識點四橢圓標(biāo)準方程的求法

  1.定義法

  橢圓標(biāo)準方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當(dāng)問題是以實際問題給出時,一定要注意使實際問題有意義,因此要恰當(dāng)?shù)乇硎緳E圓的范圍。

  例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿足,且成等差數(shù)列時,頂點A的曲線方程。

  變式練習(xí)1.在△ABC中,點B(-6,0)、C(0,8),且成等差數(shù)列。

  (1)求證:頂點A在一個橢圓上運動。

  (2)指出這個橢圓的焦點坐標(biāo)以及焦距。

  2.待定系數(shù)法

  首先確定標(biāo)準方程的類型,并將其用有關(guān)參數(shù)表示出來,然后結(jié)合問題的條件,建立參數(shù)滿足的等式,求得的值,再代入所設(shè)方程,即一定性,二定量,最后寫方程。

  例2、已知橢圓的中心在原點,且經(jīng)過點P(3,0),=3b,求橢圓的標(biāo)準方程。

  例3、已知橢圓的中心在原點,以坐標(biāo)軸為對稱軸,且經(jīng)過兩點,求橢圓方程。

  變式練習(xí)2.求適合下列條件的橢圓的方程;

  (1)兩個焦點分別是(-3,0),(3,0)且經(jīng)過點(5,0).

  (2)兩焦點在坐標(biāo)軸上,兩焦點的中點為坐標(biāo)原點,焦距為8,橢圓上一點到兩焦點的距離之和為12.

  3.已知橢圓經(jīng)過點和點,求橢圓的標(biāo)準方程。

  4.求中心在原點,焦點在坐標(biāo)軸上,且經(jīng)過兩點的橢圓標(biāo)準方程。

  知識點五共焦點的橢圓方程的求解

  一般地,與橢圓共焦點的橢圓可設(shè)其方程為。

  例4、過點(-3,2)且與有相同焦點的橢圓的.方程為()

  A.B.C.D.

  變式練習(xí)5.求經(jīng)過點(2,-3)且橢圓有共同焦點的橢圓方程。

  知識點六與橢圓有關(guān)的軌跡問題的求解方法

  與橢圓有關(guān)的軌跡方程的求解是一種很重要的題型,教材中的例題就是利用代入求球軌。跡,其基本思路是設(shè)出軌跡上一點和已知曲線上一點,建立其關(guān)系,再代入。

  例5、已知圓,從這個圓上任意一點向軸作垂線段,點在上,并且,求點的軌跡。

  知識點七與弦的中點有關(guān)問題的求解方法

  直線與橢圓相交于兩點、,稱線段為橢圓的相交弦。與這個弦中點有點的軌跡問題是一類綜合性很強的題目,因此解此類問題必須選擇一個合理的方法,如“設(shè)而不求”法,其主要特點是巧代線段的斜率。其方程具體是:設(shè)直線與橢圓相交于兩點,坐標(biāo)分別為、,線段的中點為,則有

  ①式-②式,得,即

  ∴

  通常將此方程用于求弦中點的軌跡方程。

  例6.已知:橢圓,求:

  (1)以P(2,-1)為中點的弦所在直線的方程;

  (2)斜率為2的相交弦中點的軌跡方程;

  (3)過Q(8,2)的直線被橢圓截得的弦中點的軌跡方程。

  第二部分:鞏固練習(xí)

  1.設(shè)為橢圓的焦點,P為橢圓上一點,則的周長是()

  A.16B.8C.D.無法確定

  2.橢圓的兩個焦點之間的距離為()

  A.12B.4C.3D.2

  3.橢圓的一個焦點是(0,2),那么等于()

  A.-1B.1C.D.-

  4.已知橢圓的焦點是,P是橢圓上的一個動點,如果延長到,使得,那么動點的軌跡是()

  A.圓B.橢圓C.雙曲線的一支D.拋物線

  5.已知橢圓的焦點在軸上,則的取值范圍是__________.

  6.橢圓的焦點坐標(biāo)是___________.

  7.橢圓的焦距為2,則正數(shù)的值____________.

  數(shù)學(xué)學(xué)習(xí)方法

  1、建立數(shù)學(xué)糾錯本。做作業(yè)或復(fù)習(xí)時做錯了題,一旦搞明白,決不放過,建立一本錯誤登記本,以降低重復(fù)性錯誤,不怕第一次不會,不怕第一次出錯,就怕下一次還犯同樣的錯誤把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、

  防錯。達到:平時作業(yè)、課外做題及考試中,對出錯的數(shù)學(xué)題建立錯題集很有必要。

  2、記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。

  3、經(jīng)常進行一題多解,一題多變,從多側(cè)面、多角度思考問題,挖掘問題的實質(zhì)。

  4、經(jīng)常在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,本題的分析方法與解法,在解其它問題時,是否也用到過。無論是作業(yè)還是測驗,都應(yīng)把準確性放在第一位,通法放在第一位。

  5、理解和弄懂所學(xué)的數(shù)學(xué)知識,知其然并知其所以然。學(xué)習(xí)不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來的,與前面的知識是怎樣聯(lián)系著的,表達中省略了什么,關(guān)鍵在哪里,對知識是否有新的認識,有否想到其他的解法等等。這樣細加分析、考慮后,就會對內(nèi)容增添某些注解,補充一些新的解法或產(chǎn)生新的認識等。

  6、把學(xué)過內(nèi)容貫串起來,加以融會貫通,提煉出它的精神實質(zhì),抓住重點、線索和基本思想方法,組織整理成精煉的內(nèi)容。這時由于知識出現(xiàn)高度概括,就更能促進知識的遷移,也更有利于進一步學(xué)習(xí)。

  怎么樣才能打好數(shù)學(xué)基礎(chǔ)

  第一,重視數(shù)學(xué)公式。有很多同學(xué)數(shù)學(xué)學(xué)不好就是因為對概念和公式不夠重視,具體的表現(xiàn)為對數(shù)學(xué)概念的理解只是停留在表明,不去挖掘引申的含義,對數(shù)學(xué)概念的特殊情況不明白。還有對數(shù)學(xué)概念和公式有的學(xué)生只是死記硬背,學(xué)生缺乏對概念的理解。

  還有一部分同學(xué)不重視對數(shù)學(xué)公式的記憶。其實記憶是理解的基礎(chǔ)。我們設(shè)想如果你不能將數(shù)學(xué)公式爛熟于心,那么又怎么能夠在數(shù)學(xué)題目中熟練的應(yīng)用呢?

  第二,就是總結(jié)那些相似的數(shù)學(xué)題目。當(dāng)我們養(yǎng)成了總結(jié)歸納的習(xí)慣,那么的學(xué)生就會知道自己在解決數(shù)學(xué)題目的時候哪些是自己比較擅長的,哪些是自己還不足的。

  同時善于總結(jié)也會明白自己掌握哪些數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了數(shù)學(xué)的解題技巧。其實,做到總結(jié)和歸納是學(xué)會數(shù)學(xué)的關(guān)鍵,如果學(xué)生不會做到這一點那么久而久之,不會的數(shù)學(xué)題目還是不會。

橢圓知識點總結(jié)2

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosA

  cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)

  倍角公式

  tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctga

  cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a

  半角公式

  sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)

  tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)

  2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos(A+B)—cos(A—B)

  sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB

橢圓知識點總結(jié)3

  ⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

  ⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

  ⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

  ⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

  ⑸平面向量:有關(guān)概念與初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用

  ⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的`應(yīng)用

  ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

  ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

  ⑽排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用

  ⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

  ⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

  ⒀復(fù)數(shù):復(fù)數(shù)的概念與運算

橢圓知識點總結(jié)4

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2—2accosB注:角B是邊a和邊c的夾角

  圓的標(biāo)準方程(x—a)2+(y—b)2=r2注:(a,b)是圓心坐標(biāo)

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0

  拋物線標(biāo)準方程y2=2pxy2=—2pxx2=2pyx2=—2py

  直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h

  正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'

  圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2

  圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

  弧長公式l=a*ra是圓心角的'弧度數(shù)r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

  柱體體積公式V=s*h圓柱體V=p*r2h

  乘法與因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b

  |a—b|≥|a|—|b|—|a|≤a≤|a|

  一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達定理

  判別式

  b2—4ac=0注:方程有兩個相等的實根

  b2—4ac>0注:方程有兩個不等的實根

  b2—4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根

【橢圓知識點總結(jié)】相關(guān)文章:

數(shù)學(xué)橢圓知識點歸納總結(jié)06-08

高考知識點總結(jié)12-23

高考知識點總結(jié)08-19

壓強知識點總結(jié)07-20

過秦論知識點總結(jié)06-29

語文知識點總結(jié)04-27

語文知識點總結(jié)08-26

浮力知識點總結(jié)12-28

物理知識點總結(jié)11-19

主站蜘蛛池模板: 最近中文字幕网2019 | 性欧美极品 | 真正免费一级毛片在线播放 | 亚洲本道 | 婷婷六月丁香色婷婷网 | 成人亚洲网站www在线观看 | 夜夜爽天天操 | 亚洲免费精品视频 | 欧美视频手机在线 | freee×xx性欧美 | 色综合五月 | 人人澡人人透人人爽 | 国产精品成人免费观看 | 香蕉视频色版在线观看 | 老人与老人a级毛片视频 | 久久99精品波多结衣一区 | 伊人久久大香线 | 日本高清中文字幕一区二区三区a | 国产专区青青草原亚洲 | 日韩系列在线 | 国产极品在线观看视频 | 久久国产高清视频 | 日韩伦理片网站 | 五月婷婷开心网 | 免费大黄网站在线看 | avtt亚洲天堂 | 免费国产成人18在线观看 | 欧美第一精品 | 国产第一区二区三区在线观看 | 欧美本道 | 人人舔人人插 | 中国女人特级毛片 | 丝袜无内写真福利视频 | 久草8| 国内精品免费麻豆网站91麻豆 | 精精国产www视频在线观看免费 | 九九热在线精品视频 | 一区二区不卡视频在线观看 | 免费狼人久久香蕉网 | 新神榜哪吒重生免费高清观看 | 欧美特黄aaaaaa |