国产精品一久久香蕉产线看-国产精品一区在线播放-国产精品自线在线播放-国产毛片久久国产-一级视频在线-一级视频在线观看免费

分數的基本性質教學設計

時間:2024-10-02 13:21:17 設計 我要投稿

分數的基本性質教學設計15篇

  作為一名優秀的教育工作者,往往需要進行教學設計編寫工作,教學設計是教育技術的組成部分,它的功能在于運用系統方法設計教學過程,使之成為一種具有操作性的程序。那么你有了解過教學設計嗎?下面是小編為大家收集的分數的基本性質教學設計,歡迎大家分享。

分數的基本性質教學設計15篇

分數的基本性質教學設計1

  教學內容:蘇教版小學數學第十冊第95頁至97頁。

  教學目標:

  知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。

  能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。

  情感目標:讓學生在學習過程當中養成互相幫助、團結協作的良好品德。

  教學準備:圓形紙片、彩筆、各種卡片。

  教學過程:

  一、創設情境,激發興趣

  孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”貝貝、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)

  【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發學生的學習興趣。】

  二、動手操作 、導入新課

  師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?我現在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節課,我們就來研究這個數學問題。

  【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發學生的學習興趣。】

  三、觀察對比, 由“數”變 “式”

  你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)

  四、概括分析,由“式”變 “語”

  ⒈觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數的分子、分母是怎樣變化的。

  ⒉先從左往右看,是怎樣變為與它相等的的?

  (1)分母乘2,分子乘2。

  根據分數的'意義,""表示把單位"1"平均分成2份,取其中的1份,而現在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現在平均分成了2×2=4(份),現在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==

  即原來把單位"1"平均分成2份,取1份,現在把平均分的份數和取的份數都擴大2倍,就得到。與的大小相等,分數值沒變。

  (2)由到,分子、分母又是怎樣變化的?(把平均分的份數和取的份數都擴大了4倍。)==

  (3)誰能用一句話說出這兩個式子的變化規律?

  ⒊再從右往左看

  (1) 是怎樣變化成與之相等的的?

  原來把單位"1"平均分成4份,取其中的2份,現在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現在把平均分的份數和取的份數都縮小了2倍,得到,分數的大小沒有變。

  ==

  (2) 又是怎樣變成的?(把平均分的份數和取的份數都縮小了4倍。)

  ==

  (3)誰能用一句話說出這兩個式子的變化規律?

  ⒋綜合以上兩種變化情況,誰能用一句話概括出其中的規律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?

  ⒌這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。

  (1)理解概念。

  學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?

  (2)瘃木鳥診所。(請說出理由)

  分數的分子和分母同時乘或者除以相同的數,分數的大小不變。( )

  分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )

  分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )

  ⒍小結。

  從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?

  【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規律,由此牽引到其他的有同等規律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變。】

  五、鞏固練習

  ⒈卡片練習:

  ⒉做P96“練一練”1、2。

  ⒊趣味游戲:

  數學王國開音樂會,分數大家族的節目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。

  要求:第一排是分數值等于的,第二排是分數值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?

  【通過練習,讓學生加深對分數的基本性質的理解,為下節課分數的基本性質的應用打好堅實的基礎。】

  六、課堂總結

  這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?

  七、布置作業

  做P97練習十八2。

分數的基本性質教學設計2

  教學目標:

  知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養學生觀察比較、抽象概括及動手實踐的能力,進一步發展學生的思維。

  過程與方法:經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態度與價值觀:激發學生積極主動的情感狀態,養成注意傾聽的習慣,體驗互助合作的樂趣。

  教學重點:理解和掌握分數的基本性質,會運用分數的基本性質。

  教學難點:自主探究出分數的基本性質

  教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。

  教學流程:

  一、故事導入激趣引思

  引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。

  講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的.對嗎,師父真的偏心嗎?

  生發表見解。

  二、自主合作探索規律

  1、反饋引導:1/2=2/4=4/8。“三個徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!

  2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:

  (1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。

  (2)思考:在寫分數的過程中你們發現了什么規律?

  組內商量一下然后開始行動!

  3、小組研究教師巡視

  4、全班匯報

  交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖

  板書課題:分數的基本性質打出幻燈

  5、反思規律看書對照找出關鍵詞要求重讀共同讀

  6、引證規律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。

  三、自學例題運用規律

  過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”。現在開始

  生自學

  集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。

  四、多層練習鞏固深化

  1、判斷對錯并說明理由

  2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

  2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數

  思考:分數的分母相同,能有什么作用?

  3、圈分數游戲圈出與1/2相等的分數

  4、對對碰與1/2,2/3,3/4生生組組師生互動

  五、課堂小結課堂作業

  結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,

  作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

分數的基本性質教學設計3

  一、教學目標

  1.經歷探索分數基本性質的過程,理解分數的基本性質。

  2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

  3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。

  二、教學重、難點

  教學重點是:分數的基本性質。

  教學難點是:對分數的基本性質的理解。

  三、教學方法

  采用了動手做一做、觀察、比較、歸納和直觀演示的方法

  四、教學過程

  (一)、故事引入,揭示課題

  1.教師講故事。

  猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

  討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

  引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)

  2.組織討論。

  (1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,14=28=312,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

  (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:34=68=912。

  (3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:12=24=20xx。

  3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:

  分數的分子和分母變化了,

  分數的大小不變。

  它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

  ( 二)、比較歸納,揭示規律

  1.出示思考題。

  比較每組分數的分子和分母:

  (1)從左往右看,是按照什么規律變化的?

  (2)從右往左看,又是按照什么規律變化的?

  讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

  2.集體討論,歸納性質。

  (1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。

  板書:

  (2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。

  (3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。

  (4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。

  (板書:都乘以

  相同的數)

  (5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的大小不變。

  (板書:都除以)

  (6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?

  (板書:零除外)

  (7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的`分數基本性質。

  3.出示例2:把12和1024化成分母是12而大小不變的分數。

  思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?

  4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

  5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

  ( 三)、溝通說明,揭示聯系

  通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  ( 四)、多層練習,鞏固深化

  1.口答。(學生口答后,要求說出是怎樣想的?)

  2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)

  六、教學反思:

  學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發揮學生的能動性和創造性。《分數的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現在:

  1、學生在故事情境中大膽猜想。

  通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。

  2、學生在自主探索中科學驗證。

  在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

  3、讓學生在分層練習中鞏固深化。

  在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

  反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

分數的基本性質教學設計4

  一、學習目標:

  1、學生能理解和掌握分數的基本性質,知道分數的基本性質與整數除法中商不變的規律之間的聯系。

  2、學生能運用分數的基本性質把一個分數化成分母不同而大小相等的分數。

  3、培養學生觀察、比較、抽象、概括的邏輯思維能力,滲透“事物之間是相互聯系的”辨證唯物主義觀點。

  二、重、難點:

  理解和掌握分數的基本性質。

  三、學習過程:

  一、導入

  (1)3張同樣的正方形或長方形紙片,(如下圖)平均分成2份、4份、8份,涂上顏色,分別用分數表示涂色部分。

  (2)你發現了什么?

  二、學習新知

  1、師板書 = =

  2、觀察三組分數,它們的分子和分母是怎樣變化的?

  分小組討論,并填寫

  1 ( ) 2 1 ( ) 4

  2 ( ) 4 2 ( ) 8

  4 ( ) 2 2 ( ) 1

  8 ( ) 4 4 ( ) 2

  總結:分數的分子和分母同時 或 相同的數,分數的大小

  3、應用

  根據分數的基本性質,我們可以寫出很多相等的分數

  ⑴的'分子和分母同時乘2,等于( );同時乘4,等于( );

  同時乘5,等于( );同時乘7,等于( )

  總結: =( )=( )=( )= ( )

  ⑵= 說出你這樣填的理由

  = 說出你的理由

  4、鞏固練習

  ⑴第80頁 (直接做在課本上)

  ⑵.在下面的括號里填上適當的數。

  在下面的()里填上適當的數,在○里填上“×”號或“÷”,使等式成立

  ⑶

  請你當法官(說明理由)

  ⑷下面的分數化成分母是12,而大小不變的分數

  ⑸下面的分數化成分子是6,而大小不變的分數

  5、拓展練習

  判斷

  1、分數的分子和分母同時加上或者減去相同的數,分數的大小不變。( )

  2、把 的分子增加1,分母增加3,分數的大小不變。( )

  3、把 的分子擴大2倍,分母縮小2倍,分數的大小不變。( )

  思考:一個分數的分母不變,分子乘以3,這個分數的大小有什么變化嗎?如果分子不變,分母除以5呢?

分數的基本性質教學設計5

  教學目標:

  1、通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。

  2、培養學生的觀察能力、動手操作能力和分析概括能力等。

  3、讓學生在學習過程中養成互相幫助、團結協作的良好品德。

  重點難點:

  從相等的分數中看出變與不變,觀察、發現、概括其中的規律。理解分數的基本性質。

  教具學具: 課件,每人一張白紙,一張圓紙片,彩筆

  教學時間:1課時

  教學流程:

  一、復習引入

  1、120÷30的商是多少?被除數和除數同時擴大3倍,商是多少?被除數和除數同時縮小10倍,商是多少?

  120÷30=4

  (120×3)÷(30×3)

  =360÷90

  =4

  120÷30=4

  (120÷10)÷(30÷10)

  =12÷3

  =4

  在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。

  除法與分數之間有什么聯系?

  被除數÷ 除數=被除數/除數

  教師板書:分數的基本性質

  二、動手操作

  (1)用分數表示涂色部分。

  ( )

  ( ) )

  ( ) )

  ①請大家拿出1張長方形紙片,現在我們把它對折平均分成4份,涂出其中的3份,寫上分數。

  ②把它繼續對折平均分成8份,看看原來的3/4現在成了?(6/8)

  ③繼續折成16份,看看原來的3/4現在又成了?(12/16)

  (2)小結:原來,這張紙的3/4 、6/8、 和它的.12/16同樣大!看來不管選擇哪種折法,分到的數都一樣多!

  (教師隨機板書 )3/4=3×2/4×2=6/8=6×2/8×2=12/16

  (2)用分數表示涂色部分。

  ( ) )

  ( ) )

  ( ) )

  根據上面的過程,你能得到一組相等的分數嗎?

  8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

  三、發現規律

  1、請大家觀察每個等式中的兩個分數,它們的分子。分母是怎樣變化的?

  學生觀察、思考,完成上面的圖形,再在小組內交流。

  學生交流后,教師集中指導觀察,板書這組數字,說出其中的規律。

  3/4=6/8=12/16 8/12=4/6=2/3

  從這些數字中可以得出:

  分數的分子和分母同時乘或者除以相同的數,分數的大小不變。(相同的數,這個數能不能是0 ?)

  教師舉例說明:3/4,8/12分子和分母分別乘以零,分數大小怎么樣?

  得出分數基本性質: 分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。

  在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。這叫做商不變性質。

  3、課件出一組分數讓學生練習填

  2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()

  四、練一練(課件出示)

  1、判斷.(手勢表示。)

  (1)分數的分子、分母都乘或除以相同的數,分數的大小不變。() (2)把 15 /20 的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()

  (3) 3 /4 的分子乘3,分母除以3,分數的大小不變。 ( )

  ( 4)把3/5的分子加上4,要使分數的大小不變,分母加4。 ( )

  2、把5 /6和1/4都化成分母是12大小不變的分數。(課件出示 )

  3、數學游戲(課件出示)

  說出相等的分數 1/4和2/8

  (1)你能根據分數的基本性質,再寫出一組相等的分數?

  所寫的分數是否相等?你是怎樣想的?

  (2)根據分數與除法的關系,你能用商不變的規律來說明分數的基本性質嗎?

  五、課本練習中的第1,2題。

  六、課堂總結

  這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的分數的基本性質要注意什么?我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?

  七、板書設計:

  3/4=3×2/4×2=6/8=6×2/8×2=12/16

  8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

  分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。

分數的基本性質教學設計6

  一、教學內容

  分數的基本性質。(課本第75-76頁的例1、例2及“做一做”、第77頁練習十四的第1-3題)

  二、教材簡析

  《分數的基本性質》是人教版小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。

  三、教材處理

  以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法”。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,我以讓學生探究發現分數基本性質的過程為教學重點,創設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。

  四、設計意圖:

  本課主要本著遵循小學數學課程標準“創設問題情境提出問題解決問題建立數學模型解釋數學模型運用數學模型拓展數學模型”的指導思想而設計的。

  1、通過故事創設問題情境,貼近學生生活,有利于激發學生學習興趣。

  2、從故事情境中提出問題,體現數學來源于生活。

  3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。

  4、從幾組分數中分析,找到分數的基本性質,從而初步建立數學模型。

  5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。

  6、在游戲活動中對數學知識進行拓展運用。

  五、教學目標

  1、知識與技能

  (1)經歷探索分數的基本性質的過程,理解分數的基本性質。

  (2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

  2、情感態度與價值觀

  (1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。(2)體驗數學與日常生活密切相關。

  3、過程與方法

  (1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分

  數的基本性質作出簡要的、合理的說明。

  (2) 培養學生的觀察、比較、歸納、總結概括能力。

  (3)能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。

  六、教學重點

  理解分數的基本性質

  七、教學難點

  能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數

  八、教學準備

  教師:電腦課件

  學生:圓紙片 長方形紙

  九、教學過程:

  (一)回顧復習,舊知鋪墊。

  課件出示復習題

  1、商不變的性質

  12÷3=( )

  (12×10)÷(3×10)=( )

  (12÷3)÷(3÷3)=( )

  利用什么知識填空的?

  2、除法與分數的關系

  30 ÷ 120 =( )/( )

  ( )÷( ) =17/51

  利用什么知識填空的?

  (二)故事引人,揭示課題。

  課件出示故事(動畫):從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦不對,是三個小和尚。小和尚最喜歡吃老和尚做的餅啦。有一天,老和尚做三塊大小一樣的餅,想給小和尚吃,還沒給,小和尚就叫開了,“我要一塊”,“我要兩塊”,“嘻嘻,我不要多,只要四塊。”老和尚二話沒說,把第一塊餅平均分成4塊,取出其中1塊給第一個和尚;把第二塊餅平均分成8塊,取其中2塊給高和尚。把第三塊餅平均分成16塊,取其中的4塊給了胖和尚。小朋友,你知道哪個和尚分得多嗎?

  生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……

  師:到底誰回答得對呢?我們一起動手分餅來求證吧

  1、合作探究

  師:請同學們以兩人一組,拿出三個大小相等的圓,分別用陰影部分表示每個和尚分得的餅(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契。)

  師:比較一下陰影部分的大小,結果怎樣?

  生:陰影部分的大小相等。

  師:陰影部分相等說明每個和尚分的餅相等.

  師:請同學們用分數表示陰影部分

  師:陰影部分相等說明這三個分數怎樣?

  生:三個分數相等。(隨著學生的回答,老師將板書的三個分數用“=”連接。)

  2、組織討論。

  師:仔細觀察這三個分數什么變了,什么沒有變?

  讓學生小組討論后答出:它們分數的分子和分母變化了,但分數的大小不變。

  師:它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

  3、比較歸納

  同學們:從左往右觀察,這三個分數的分子和分母是按照什么規律變化的才保證了分數的大小不變的?

  集體討論幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。(邊講邊板書)

  師:從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的大小不變。(邊講邊板書)

  4、揭示規律

  教師小結:“剛才大家都觀察得很仔細,像分數的分子、分母發生的'這種有規律的變化,它的大小不變。就是我們這節課學習的新知識。(板書課題:分數的基本性質)

  師:“什么叫做分數的基本性質呢?就你的理解,能把它歸納成一句話嗎?(小組討論發言)

  師:剛才同學們都用自己的語言說了分數的基本性質,我們的書上也總結了分數的基本性質,現在請打開書看到75頁。看看和我們總結的有什么不同,并用波浪線表出關鍵的詞。(如:同時,相同,0除外等)

  全班討論:為什么要規定0除外”?

  引導:現在同學們知道了聰明的老和尚是用運用什么規律來分餅,既滿足小和尚的要求,又分得那么公平?

  (三)梳理溝通,靈活運用。

  1、分數的基本性質與商不變的性質的聯系。

  想一想,根據分數與除法的關系,以及整數除法中商不變的規律,你能說明分數的基本性質嗎?

  啟發學生說出它們之間的聯系:

  (1)分子相當于被除數,分母相當于除數;

  (2)被除數和除數同時乘以或除以相同的數就相當于分子和分母同時乘以或除

  以相同的數;

  (3)“相同的數”中要求“0除外”;

  (4)商不變相當于分數的大小不變。

  2、分數基本性質的應用

  (1)出示課本第76頁例2,把2/3 和10/24 分別轉化成分母是12而大小不變的分數。

  (2)認真審題,弄清題意。

  要求學生讀題后歸納出題目的要求。

  a.分母都變成12

  b.分數的大小不變

  (3)想一想:怎么化,根據什么?

  過程要求:

  a.學生獨立思考,完成題目要求;

  b.全班反饋,教師課件顯示;

  (四)多層練習,鞏固深化。

  1、完成教科書第77頁練習十四的第1-3題。

  (1)第1題

  此題著重練習分數的相等和不等。練習時,讓學生按照題目的要求涂色。

  (2)第2題

  此題是運用分數的基本性質比較分數大小的實際問題,學生在練習中將2/5化成4/10,或者把4/10化成2/5,再作比較,都是可以的。

  (3)第3題,說出相等的分數(對口令)

  此題是運用分數基本性質的游戲練習.游戲時,讓學生以同桌為單位.仿照第3題的樣子,一個人先說一個分數,另一個人回答一個相等的分數,然后交換先后順序。

  2、教科書76頁 “做一做”

  (1)由學生獨立完成,然后同學交流.

  (2)全班反饋,說一說思維過程.

  (五)小結

  教師:同學們,通過今天的學習,你有什么收獲?

  ,題界知家數同時乘以或除以相同的數就相當于分子和分母同時乘以或除

  (六)動腦筋出教室游戲(機動)

  讓學生拿出課前發的寫有分數的紙片,要求學生看清手中的分數。與 相等的,報出自已的分數后先離場,與相等的再離場,與相等的最后離場。

  十、板書設計

  商不變的性質

  被除數和除數同時乘或除以相同的數(0除外),商不變。

  分數與除法的關系

  a÷b =a/b(b≠0)

  分數的基本性質

  分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

分數的基本性質教學設計7

  教學內容:人教版五年級數學下冊57頁內容及58、59頁練習。

  教學目標:

  知識與技能:通過教學使學生理解的掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)相同而大小不變的分數,并能應用這一性質解決簡單的實際問題。

  過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據地思考、探究問題,培養學生的抽象概括能力。

  情感、態度和價值觀:使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。

  教學重點:理解和掌握分數的基本性質。

  教學難點:應用分數的基本性質解決問題。

  教學準備:預習生成單、作業紙、課件

  教學課時:一課時

  教學過程:

  一、導入新課,揭示課題

  1、師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數的基本性質)

  2、師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數學問題,現在請組長帶領組員提煉出你們組最想研究的問題。

  3、指名學生匯報。

  4、師:同學們,不管你們提出什么樣的問題,都與分數的基本性質有關,今天我們就帶著這些問題走進課堂。

  二、檢查預習,自主探究

  1.出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統一意見準備匯報。)

  2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)

  3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數嗎?教師及時的板演,

  4.師:其他同學還有補充嗎?你們得出這個結論了嗎?

  三、合作交流,探究新知

  1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規律呢?我們通過合作交流來探究這個問題。

  2.出示合作要求(課件),指名學生讀一讀。

  3.學生合作交流,探究學習。

  4.學生匯報中教師要及時糾正學生的語言要規范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數的分子和分母之間的變化規律是怎樣?

  5.指導匯報,總結規律。誰能完整的說一下你們剛才總結出的規律?

  6.教師歸納板書:分數的分子和分母同時乘或者除以相同的數,分數的大小不變。

  7.請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)

  8.再讀一讀,說說這句話中哪個詞比較關鍵。

  9.拓展深化,加深理解,完成練習,思考:分數的基本性質與商不變的性質之間的聯系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。

  9.教師小結:通過剛才的學習,孩子們的表現特別出彩,老師相信你們接下來的表現會更棒。

  四、應用拓展,新知內化

  1.出示例2,指名讀題,理解題意。

  2.師:你覺得解決這道題應該利用什么知識?(生:分數的基本性質)

  3.學生獨立在練習本上完成,指名板演,集體訂正。

  4.小結:剛才,我們通過自主學習、小組探究知道了什么是分數的'基本性質,下面就應用分數的基本性來解決一些實際問題。

  五、當堂檢測

  (一)、下面每組中的兩個分數是否相等?相等的在括號里畫“√”,不相等的畫“X”。

  和()和()和()和()

  (二)、填空。

  ======

  (三)、把下列分數化成分母是10而大小不變的分數。

  ===

  (四)、涂色表示出與給定分數相等的分數。

  (五)、如果一堂課40分鐘,哪個班做練習用的時間長?

  六、課堂小結:通過這節課的學習,你學會了什么?

  板書設計:

  分數的基本性質

  分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

  這節課最多的考慮就是分數的基本性質這個規律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。

分數的基本性質教學設計8

  【教材依據】

  《分數的基本性質》是九年義務教育北師大版五年級上冊第三單元的內容。

  【設計理念】

  根據新課標的基本要求,我以培養學生的創新意識和實踐能力為重點,在教學中創設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結果”的開放式教學流程。讓學生在問題情境中激活內在要求,大膽猜想,使實驗成為內在需求。通過觀察操作、經歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。

  【學情與教材分析】

  《分數的基本性質》是北師大版小學數學教材五年級上冊第三單元《分數》的教學內容,它既與整數除法的商不變性質有著內在的聯系,也是約分和通分的基礎,而約分和通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。學生之前已經掌握了商不變的性質,在教學之后將其與分數的基本性質進行聯系,有意識地加強分數與除法的關系,以便把舊知識遷移到新的知識中來。

  【教學目標】

  1、經歷探索分數基本性質的過程,理解分數的基本性質。

  2、能運用分數基本性質,把一個數化成指定分母(或分子)大小不變的分數。

  3、經歷觀察、操作和討論等數學活動,體驗數學學習的樂趣及數學與日常生活密切聯系。

  【教學重點】運用分數的基本性質,把一個數化成指定分母(或分子)而大小不變的分數。

  【教學難點】聯系分數與除法的關系,理解分數的基本性質,溝通知識間的聯系。

  【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。

  【教學過程】

  一、創設情境,激趣導入

  師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據自己的預習告訴老師校長笑什么?

  生1:四、五、六年級分的地一樣多。

  生2:……

  師:到底校長分的公平不公平,我們來做個實驗吧?

  二、動手操作,探究新知

  1,小組合作,實驗探究。

  師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。

  2,匯報結果

  師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。

  生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。

  生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。

  生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。

  生4:把分數化成小數,他們的商也一樣,所以三塊地的面積一樣大。

  生5:……

  3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)

  (設計意圖:這樣設計的目的是為了更有利于學生主體個性的發揮,在探究活動中充分發揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)

  4、探索分數的基本性質。

  師:三個年級分的地一樣多,那么你們覺得、、這三個分數的大小怎么樣?

  生:相等。

  師:同學們請看這組分數有什么特點?(板書=)

  生:分數的分子分母發生了變化分數的大小不變。

  師:請同學們從左往右仔細觀察,第一個分數和第二個分數相比分子分母發生了什么變化?第一個和第二個,第二個和第三個呢?

  生:分子分母同時乘2,……

  師:誰能用一句換來描述一下這個規律?

  生:給分數的分子分母同時乘相同的數。(師隨著板書)

  師:同學們在反過來從右往左觀察,分數的分子、分母有什么變化規律?

  生:分數的分子分母同時除以相同的數。

  師:像這樣給分數的分子分母同時乘或(除以)相同的數,分數的大小不變。就是我們這節課學習的新知識。(板書分數的基本性質)。

  師:結合我們的預習,對于分數的基本性質同學們還有什么不同的意見?

  生:0除外。

  師:為什么0要除外?

  生:因為分數的分母不能為0.

  師:(補充板書0除外)在分數的基本性質中,那幾個詞比較重要?

  生:同時相同0除外

  師:(把這三個詞用紅筆加重)同學們有沒有發現分數的基本性質和誰比較相似?

  生:商不變的性質。

  師:為什么?

  生:我們學過分數與除法的關系,被除數相當于分子,除數相當于分母,所以他們是相通的。

  師:數學知識中有許多知識如像商不變性質與分數的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。

  三:應用新知,練習鞏固。

  (一)練一練

  (二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數,如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數,這個水果就獎勵給你。

  (二)判斷(搶答)

  1、分數的分子、分母都乘過或除以相同的數分數的大小不變。

  2、把的分子縮小5倍,分母也縮小5倍分數的大小不變。

  3、給分數的分子加上4,要是分數的大小,分母也要加上4。

  (四)測一測

  1、把和都化成分母是10而大小不變的.分數。

  2、把和都化成分子是4而大小不變的分數。

  3、的分子增加2,要是分數大小不變,分母應增加幾?

  四:總結。

  1、這節課大家表現的都很棒,誰能說說你這節課你都知道哪些知識?

  2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)

  五:作業練習冊2、4題

  【板書設計】

  分數的基本性質

  給分數的分子分母同時乘或除以相同的數(0除外)分數的大小不變。

  【教學反思】

  本節課教學,我讓學生在故事中感悟,激發了他們的學習興趣。在數學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發現數學問題,這是多么美好的事情!

  這樣的設計真是激發了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數學的視角來分析問題、解決問題,從而讓學生感受學習數學的價值。

  本節課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發現、去創造。

  在學生通過聽故事、看圖片,讓學生猜想、、這三個分數是否真的相等,并聯想學過的知識或借助學具,怎樣證明你的聯想是正確的。學生想出了多種方法證明這三個分數也是相等的,體現了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數學上都會有不同的發展。

分數的基本性質教學設計9

  教學要求

  ①使學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。

  ②培養學生觀察、分析和抽象概括能力。

  ③滲透“事物之間是相互聯系”的辯證唯物主義觀點。

  教學重點理解分數的基本性質。

  教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

  教學過程

  一、創設情境

  1、120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?

  2、說一說:

  (1)商不變的性質是什么?

  (2)分數與除法的關系是什么?

  3、填空。

  1÷2=(1×2)÷(2×2)=。

  二、揭示課題

  讓學生大膽猜測:在除法里有商不變的性質,在分數里會不會也有類似的性質存在呢?這個性質是什么呢?

  隨著學生的`回答,教師板書課題:分數的基本性質。

  三、探索研究

  1、動手操作,驗證性質。

  (1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數表示出來。

  (2)觀察比較后引導學生得出:

  (3)從左往右看:

  由變成,平均分的份數和表示的份數有什么變化?

  把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。

  把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。

  引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。

  (4)從右往左看:

  引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

  板書:

  讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。

  (5)引導學生概括出分數的基本性質,并與前面的猜想相回應。

  (6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)

  2、分數的基本性質與商不變的性質的比較。

  在除法里有商不變的性質,在分數里有分數的基本性質。

  想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?

  3、學習把分數化成指定分母而大小不變的分數。

  (1)出示例2,幫助學生理解題意。

  (2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?

  (3)讓學生在書上填空,請一名學生口答。教師板書:

  4、練習。教材第108頁的做一做。

  四、課堂實踐。

  練習二十三的1、3題。

  五、課堂小結

  1、這節課我們學習了什么內容?

  2、什么是分數的基本性質?

  六、課堂作業

  練習二十三的第2題。

  七、思考練習

  練習二十三的第10題。

  后記:

分數的基本性質教學設計10

  一、故事引人,揭示課題。

  1.教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?

  討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

  引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)

  [一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]

  2.組織討論。

  (1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

  (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:3/4=6/8=9/12。

  (3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:1/2=2/4=20/40。

  3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:

  分數的分子和分母變化了, 分數的大小不變。

  它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

  3.出示例2:把1/2和10/24化成分母是12而大小不變的分數。

  思考:要把1/2和10/24化成分母是12而大小不變的分數,分子怎么不變?變化的依據是什么?

  4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

  [得出性質后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應,又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]

  5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

  通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的`性質,說明分數的基本性質。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

  [有助于學生順利地運用分數與除法的關系,以及整數除法中商不變性質說明分數的基本性質,實現新知化歸舊知。]它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

  二、比較歸納,揭示規律。

  1.出示思考題。

  2.比較每組分數的分子和分母:

  (1)從左往右看,是按照什么規律變化的?

  (2)從右往左看,又是按照什么規律變化的?

  讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

  2.集體討論,歸納性質。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到6/8。

  板書:

  (2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。

  (3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數的大小不變。

  (4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。

  (板書:都乘以 相同的數)

  (5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都乘以相同的數,分數的大小不變。

  (板書:都除以 )

  (6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?

  (板書:零除外)

  (7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。

  [新知識力求讓學生主動探索,逐步獲取。“猴王分餅”和分析班級學生人數得出的三組相等的分數為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。]

分數的基本性質教學設計11

  一、教學目標:

  1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。

  2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。

  3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。

  二、教學重點:

  理解掌握分數的基本性質,它是約分,通分的依據

  三、教學難點:

  理解和掌握分數的基本性質,初步建立數學模型。

  四、教學準備:

  課件、正方形的紙。

  五、教學設計過程:

  (一)遷移舊知.提出猜想

  1、回憶舊知

  猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3

  你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:

  被除數÷除數=

  誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的.性質:

  被除數和除數同時乘或除以相同的數(零除外),商不變。

  2、提出猜想:

  既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)

  (二)驗證猜想,建構新知

  A、 看圖分類

  下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。

  B、 討論方法

  師:你是怎么判斷它們相等的?

  師:它們相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  C、研究規律

  師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?

  利用研究卡進行研究。

  確定的研究對象

  分子和分母同時乘上或者

  除以一個相同的數

  得到的分數

  研究對象與得到的分數相等嗎?

  相等( )不相等( )

  猜想是否成立?

  成立( )不成立( )

  充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)

  師:為什么要0除外?

  師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

  練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

  師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)

  師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)

  師:分數的基本性質與商不變性質有什么聯系?

  D、質疑完善

  3/4 = 3×( )/ 4×( )

  師:括號中可以填哪些數?

  預設:可以填無數個數

  師:如果只用一個數來表示,填什么數好?

  預設:字母

  師:這個字母有什么特殊要求嗎?(0除外)

  得到一個初級的數學模型。3/4= 3×X/ 4×X(X≠0)

  讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?

  (三) 練習升華

  1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

  2、把5/6和1/4都化為分母為12而大小不變的分數。

  3、把2/3和3/4都化為分子為6而大小不變的分數。

  4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?

  5、 和 哪一個分數大,你能講出判斷的依據嗎?

  (四)總結延伸

  師:這節課學了什么?

  師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)

  六、作業p87-1、2

  板書設計

  分數基本性質

  分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

  6÷8

  3÷4

  12÷16

分數的基本性質教學設計12

  一、教學目標

  1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。

  2、學生通過觀察、比較、發現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。

  3、激發學生積極主動的情感狀態,體驗互相合作的樂趣。

  二、教學重點

  1、理解、掌握分數的基本性質,能正確應用分數的基本性質。

  2、自主探究出分數的基本性質。

  三、教學準備

  課件、正方形的`紙

  四、教學設計過程

  (一)遷移舊知.提出猜想

  1、回憶舊知

  根據“288÷24=12”填空

  28.8÷2.4=

  2880÷240=

  2.88÷0.24=

  0.288÷()=12

  被除數÷除數=()

  說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:

  被除數和除數同時乘或除以相同的數(零除外),商不變。

  2、提出猜想

  既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)

  (二)驗證猜想,建構新知

  1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)

  2、出示學習提示。

  學習提示

  A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。

  B、驗證結束后,把你的'驗證方法和結論與小組同學交流。

  3、匯報交流

  指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。

  C、總結規律

  1、師:請同學們看黑板上的兩組分數,說說它們的分子和分母分別是按什么規律變化的。指名回答,教師板書。

  2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發生變化。

  3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的?

  如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

  師:為什么要0除外?

  師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

  教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的。

  師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)

  D教學例2

  把2/3和10/24都化為分母為12而大小不變的分數。

  學生獨立完成,集體訂正。

  (三)練習升華

  1、填空

  2、下面算式對嗎?如果有錯,錯在哪里?

  3、把相等的分數寫在同一個圈里。

  4、老師給出一個分數,同學們迅速說出和它相等的分數。

  (四)作業

  教材59頁第9題。

  (五)思維拓展

  (六)總結延伸

  師:這節課你有什么收獲?

  五、板書設計

  分數基本性質

  分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

分數的基本性質教學設計13

  教學目標

  1. 讓學生通過經歷預測猜想——實驗分析——合情推理——探究創造的過程,理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。

  2. 根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。

  3. 培養學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養敢于質疑、學會分析的能力。

  教學重點使學生理解分數的基本性質。

  教學難點讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。

  教學過程

  一、故事情景引入

  同學們,每年的中秋節你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統風俗。去年的中秋節,易老師的鄰居李奶奶家里,發生了一件有趣的事情,大家想不想知道?

  好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

  同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。

  討論完了請舉手。

  生甲:“我覺得不公平,小紅分得多。”

  生乙:“我覺得小明分得多。”

  生丙:“我覺得公平,他們三個分得一樣多。”

  師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節課同學們就會明白了。”

  二、新授

  師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

  請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

  生:“三張圓片一樣大。”

  1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”

  首先,請在第一張圓片上表示出它的1/3;

  再在第二張圓片上表示出它的2/6;

  然后在第三張圓片上表示出它的3/9。

  好了,大家動手分一分。(教師巡視指導)

  2. 師:“分完了的請舉手?

  老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

  下面請哪位同學說一說,你是怎么分的?”

  生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”

  生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”

  師:“那九分之三又是怎么得到的呢?大家一起說。”

  生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”

  (學生說的`同時,教師操作,分完后把圓片貼在黑板上。)

  3. 師:“同學們,觀察這些圓的陰影部分,你有什么發現?”

  小結:原來三個圓的陰影部分是同樣大的。

  師:“ 現在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

  生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多。”

  師:“現在我們的意見都統一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數的大小怎么樣呢?”

  生甲:“通過圖上看起來,這三個分數應該是一樣大的。”

  生乙:“這三個分數是相等的。”

  師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)

  4. 研究分數的基本規律。

  師:“我們仔細觀察這一組分數,它的什么變了,什么沒變?”

  生甲:“三個分數的分子分母都變了,大小沒變。”

  師:“那它的分子分母發生了怎樣的變化呢?讓我們從左往右看。

  第一個分數從左往右看,跟第二個分數比,發生了什么變化?”

  生乙:“它的分子分母都同時擴大了兩倍。”

  師:“跟第三個分數比,它又發生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

  再引導學生反過來看,讓學生自己說出其中的規律。(邊講邊板書)

  教師小結:“剛才大家都觀察得很仔細,這組分數的分子分母都不同,它們的大小卻一樣,那么,分子分母發生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”

  學生發言

  小結:像分數的分子分母發生的這種有規律的變化,就是我們這節課學習的新知識。分數的基本性質。

  5. 深入理解分數的基本性質。

  師:“什么叫做分數的基本性質呢?就你的理解,用自己的語言說一說。”(學生討論后發言)

  師:剛才同學們都用自己的語言說了分數的基本性質,我們的書上也總結了分數的基本性質,現在請打開書看到108頁。看看書上是怎么說的,是你說得好,還是書上說得好,為什么?

  齊讀分數的基本性質,并用波浪線表出關鍵的詞。

  生甲:我覺得“零除外”這個詞很重要。

  生乙:我覺得“同時”“相同”這兩個詞很重要。

  師:想一想為什么要加上“零除外”?不加行不行?

  讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。

  教師小結:“以三分之一這個分數為例,它的分子分母同時除以零,行嗎?不行,除數為零沒意義。所以零要除外。同時乘以零呢?我們就會發現,分子分母都為零了,而分數與除法的關系里,分母又相當于除數,這樣的話,除數又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)

  三、應用

  1.學了分數的基本性質到底又什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術。

  2.學生練習課本例題2,兩名學生在黑板上做。

  3.學生自己小結方法。

  4.按規律寫出一組相等的分數。

分數的基本性質教學設計14

  教學內容:

  蘇教版數學五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。

  預設目標:

  1、使學生經歷探索分數基本性質的過程,初步理解和掌握分數的基本性質,知道它與商不變規律之間的聯系。

  2、使學生能應用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。

  3、使學生在觀察、操作、思考和交流等活動中,培養分析、綜合和抽象、概括能力,體驗數學學習的樂趣。

  教學重點:

  探索、發現、歸納和理解分數的基本性質。

  教學過程:

  一、導入

  猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。

  二、學習新知

  1、提供例證

  (1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據是什么?你能接著往下再寫一個除法算式嗎?

  板書:1/3=2/6=3/9(得出三個相等的分數)

  (2)學生折紙找與1/2相等的分數。

  你能先對折,涂色表示它的1/2嗎?你能通過繼續對折,找出和1/2相等的其他分數嗎?

  展示與1/2相等的分數,并逐步板書:1/2=2/4=4/8=8/16

  2、誘導探索

  提問:這些分數的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規律呢?分數的分子、分母怎樣變化分數的大小不變呢?

  3、探究新知

  (1)獨立思考或小組交流。

  (2)探究驗證。

  你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數中任意選一組具體說說分數的分子、分母怎樣變化以后,分數的大小不變?

  教師根據學生的回答進行板書。

  4、揭示結論:出示分數的基本性質的內容,并揭示課題。

  5、深究結論:

  (1)在分數的基本性質中,你認為哪些字詞比較重要,為什么?

  (2)齊讀并理解記憶分數的基本性質。

  三、多層練習

  1、填一填。(在○里填運算符號,在□里填數或字母)。

  4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

  5/8=5○□/8○67/12=7○□/12○□

  2、判斷。

  3/4=3+4/4+4()12/15=12÷n/15÷n()

  5/25=5×5/25÷5()5/6=25/30()

  四、課堂作業:

  1、第62頁“練一練”2。

  2、第63頁第3題。

  3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?

  反思

  “分數的基本性質”在分數教學中占有重要的地位,它是約分、通分的依據,對于以后學習比的基本性質也有很大的幫助,所以分數的基本性質是本單元的教學重點。這節課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學知識,更主要的是數學學習的方法,

  從而激勵學生進一步地主動學習,產生我會學的成就感,讓學生學會學習,學會思考,學會創造,進而培養學生用數學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,這節課我是這樣設計教學的:

  1、通過商不變的性質、除法與分數的關系的復習,幫助學生意識到商不變的變規律與新知識的聯系,為新知識的學習做好必要的準備。

  2、學生在自主探索中科學驗證。

  在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的`正確性,突現出課堂教學以學生為本的特性。每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。

  3、讓學生在多層練習中鞏固深化。

  在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

  反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

分數的基本性質教學設計15

  教學目的:

  1、理解分數的基本性質;

  2、初步掌握分數性質的應用;

  3、培養學生觀察——探索——抽象——概括的能力;

  4、滲透事物是相互聯系、發展變化的辯證唯物主義觀點。

  教學重點:

  從相等的分數中看出變與不變,觀察、發現、概括其中的規律。

  教學難點:

  形成對分數的基本性質的統一認知。

  教學準備:

  多媒體,自制演示教具。

  教學過程:

  一、激趣引新:

  1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節課我們就來解決這個問題。

  2、在下面的()中填上合適的數。

  1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

  同學們現在已經能用分數的知識來解決問題了。

  二、啟發引導,探索新知。

  1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?

  通過圖形的平移、旋轉等方法看出三個班種植面積一樣大。

  2.引導觀察得出結論。

  (1)通過拼圖得到1/2=2/4=4/8

  (2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?

  (3)引導思考探索變化規律:

  從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

  反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  3.共同討論,引導學生抽象概括出分數的基本性質:

  (1)怎么做能使分數的分子和分母發生變化,而分數的大小都不變呢?

  (2)變化時同時乘或除以小數可以嗎?

  (3)0可以嗎?3/4=3×0/4×0=?(分數的分母不能為0,在除法里0不能作除數,分子和分母都乘或除以相同的數,這個數不能是0。)

  歸納分數基本性質:分數的.分子和分母都乘或除以相同的數(0除外)分數的大小不變。

  4.學習分數的基本性質以后,感覺過去我們學過類似的性質是什么呢?(商不變的性質)

  (1)練習在□中填上合適的數

  1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

  (2)你能把1÷2這個除法算式改寫成分數形式?

  你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)

  5.組織練習

  (1)判斷:

  1/5=1/5×3=1/5()

  5/6=5×2/6×3=10/18()

  8/12=8×4/12÷4=32/3()

  2/5=2+2/5+2=4/7()

  3/4=3÷0.5/4÷0.5()

  分數的分子和分母都乘或除以相同的數,分數的大小不變。()

  (2)畫一畫、填一填

  (3)填空

  1/2=1×()/2×()=6/()

  10/24=10()/24()=()/12

  15/60=()/203/()=9/12

  6/18=()/()=()/()(有多少種填法)

  6.通過練習在此性質中哪些是關鍵詞?

  7.鞏固練習(選擇你喜歡的一題來做)

  (1)與1/2相等的分數有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數?

  (2)9/24和20/32哪一個數大一些,你能講出判斷的依據嗎?

  三、課堂總結

  今天這節課同學們學了分數的基本性質,有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。

  四、課堂作業:練習十四第1——3題。

  板書設計:

  分數的基本性質

  1/2=1×2/2×2=2/4=2×2/4×2=4/8

  分數的分子和分母同時乘以一個不為0的數分數的大小不變

  4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  分數的分子和分母同時除以一個不為0的數分數的大小不變

  綜上所述分數的基本性質是:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

【分數的基本性質教學設計】相關文章:

分數的基本性質教學設計04-05

分數基本性質教學設計02-15

《分數的基本性質》教學設計12-04

《分數基本性質》教學設計(15篇)04-04

分數的基本性質教學設計(15篇)04-05

分數基本性質教學設計15篇02-15

分數的基本性質教學設計(精選15篇)10-23

《分數基本性質》教學設計15篇04-04

分數的基本性質教學設計精選15篇04-05

主站蜘蛛池模板: 国产精品视频人人做人人爱 | 成人亚洲网| 日本欧美在线 | 中文字幕第四页 | 欧美日本国产 | 日日碰狠狠添天天爽五月婷 | 欧美洲视频在线观看 | 国产99久9在线视频 国产99视频精品免费观看7 | 亚洲精品福利在线观看 | 日本三级视频网站 | 2020久久精品国产免费 | 在线五月婷婷 | 久久综合狠狠综合久久97色 | 丝袜美腿极品老师系列集合 | 亚洲综合20p| 99精品在线免费观看 | 免费视频性 | 搞黄视频免费 | 久久精品动漫网一区二区 | 欧美一欧美一区二三区性 | 国产精品一区二区不卡的视频 | 欧美日韩精品一区二区三区四区 | 我把寡妇日出水好爽视频 | 国产精品久久久久久影视 | 五月开心综合 | 亚洲欧美激情综合首页 | 中文字幕免费视频 | 国产综合激情在线亚洲第一页 | 亚洲欧美综合 | 国产成人免费在线视频 | 免费观看60秒做受视频 | 国产精品视_精品国产免费 国产精品视频a | 亚洲免费观看视频 | 国产亚洲欧洲国产综合一区 | 日日摸夜夜添夜夜添97 | 亚洲欧美日韩在线线精品 | 国产午夜在线视频 | 国产超级乱淫视频播放 | 欧美视频免费播放 | 在线播放成人高清免费视频 | 国产一区免费观看 |