初中數學教學設計(通用20篇)
作為一名優秀的教育工作者,有必要進行細致的教學設計準備工作,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創造性的決策,以解決怎樣教的問題。怎樣寫教學設計才更能起到其作用呢?以下是小編精心整理的初中數學教學設計,僅供參考,希望能夠幫助到大家。
初中數學教學設計 1
一、教學目標:
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育.
二、教學重點、難點:
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.
三、教學方法與教學手段:
通過與一元一次方程的比較,加強學生的類比的思想方法; 通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點.
四、教學過程:
1.情景導入:
新聞鏈接:桐鄉70歲以上老人可領取生活補助
得到方程:80a+150b=902 880.
2.新課教學:
引導學生觀察方程80a+150b=902 880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程.
做一做:
(1)根據題意列出方程:
①小明去看望奶奶,買了5 kg蘋果和3 kg梨共花去23元,分別求蘋果和梨的單價.設蘋果的單價x元/kg , 梨的單價y元/kg ;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的'速度是a千米/小時,卡車的速度是b千米/小時,可得方程: .
(2)課本P80練習2. 判定哪些式子是二元一次方程方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值; 接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
出示例題:已知二元一次方程 x+2y=8.
(1)用關于y的代數式表示x;
(2)用關于x的代數式表示y;
(3)求當x= 2,0,-3時,對應的y的值,并寫出方程x+2y=8的三個解.
(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
4.課堂練習:
(1)已知:5xm-2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x-y=3中,方程可變形為y= 當x=2時,y= ;
5.課堂小結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.
7.布置作業:
(1)教材P82;
(2)作業本.
初中數學教學設計 2
[教學目標]
1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。
2.知道全等三角形的有關概念,會在全等三角形中正確地找出對應頂點、對應邊、對應角。
3.會說出全等三角形的對應邊、對應角相等的性質。
此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現各種不同位置的活動,讓學生從中了解并體會圖形變換的思想,逐步培養學生
動態的研究幾何圖形的意思。
[引導性材料]
我們身邊經常看到"一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。
說明:讓學生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。
[教學設計]
問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認為哪種說法是恰當的?
(1)形狀相同的兩個圖形叫全等形。
(2)大小相等的兩個圖形叫全等形。
(3)能夠完全重合的.兩個圖形叫全等形。
(學生閱讀課本第21頁,全等三角形的有關概念、全等三解形的表示方法。)操作和觀察(學生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復合投影片演示。)
(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。
(2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應頂點、對應邊、對應角。
(3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。
(4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應頂點、對應邊、對應角。
[小結]
1.識別全等三角形的對應邊、對應角的關鍵是正確識別它們的對應頂點。
2.用全等三變換的方法觀察圖形,有助于正確、迅速的從復雜圖形中識別出全等三角形。
[作業]
課本組第2、3、4題。
初中數學教學設計 3
教學目標
1、知識與技能:
(1)理解一元一次不等式組及其解集的意義;
(2)掌握一元一次不等式組的解法。
2、過程與方法:
(1)經歷通過具體問題抽象出不等式組的過程,培養學生逐步形成分析問題和解決問題的能力。
(2)經歷一元一次不等式組解集的探究過程,培養學生的觀察能力和數形結合的思想方法,滲透類比和化歸思想。
3、情感、態度與價值觀:
(1)感受數形結合思想在數學學習中的作用,養成自主探究的良好學習習慣。
(2)學生在解不等式組的過程中體會用數學解決問題的直觀美和簡潔美。
學情分析
本節討論的對象是一元一次不等式組。幾個一元一次不等式合在一起,就得到一元一次不等式組。從組成成員上看,一元一次不等式組是在一元一次不等式基礎上發展的新概念;從組成形式上看,一元一次不等式組與第八章學習的方程組有類似之處,都是同時滿足幾個數量關系,所求的都是集合不等式解集的公共部分或幾個方程的公共解。因此,在本節教學中應注意前面的基礎,讓學生借助對已學知識的認識學習新知識。
另外,本節課是在學生學習了一元一次方程、二元一次方程組和一元一次不等式之后的又一次數學建模思想學習,是今后利用一元一次不等式組解決實際問題的關鍵,是后續學習一元二次方程、函數的重要基礎,具有承前啟后的重要作用。另外,在整個學習過程中數軸起著不可替代的作用,處處滲透著數形結合的思想,這種數形結合的思想對學生今后學習數學有著重要的影響。
重點難點
1、教學重點:對一元一次不等式組解集的認識及其解法。
2、教學難點:對一元一次不等式組解集的認識及確定。
3、教學關鍵:利用數軸確定不等式組中各個不等式解集的公共部分。
教學過程
第一學時
教學活動活動
【導入】溫故知新
教師提問:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
針對性練習:
(設計意圖:檢驗學生是否理解和掌握一元一次不等式的相關概念,為本節新課內容的學習做好鋪墊。同時對解不等式中的相關要點加以強調:①解不等式中,系數化為1時不等號的方向是否要改變;②在數軸上表示解集時“實心圓點”和“空心圓圈”的選擇;③要正確理解利用數軸表示出來的不等式解集的幾何意義。)
活動2【講授】創設問題情景,探索新知
1、問題(課本第127頁):用每分鐘可抽30 t水的抽水機來抽污水管道里積存的污水,估計積存的污水
超過1 200 t而不足1 500 t,那么將污水抽完所用時間的范圍是什么?
(設計意圖:結合生活實例,讓學生經歷通過具體問題抽象出不等式組的過程,即經歷知識的拓展過程,讓學生體會到數學學習的內容是現實的、有意義的、富有挑戰性的。)
2、引導學生找出問題中“積存的污水”需同時滿足的兩個不等關系:
超過1 200 t和不足1 500 t。
3、問題1:如何用數學式子表示這兩個不等關系?
1)引導學生一起把這個實際問題轉換為數學模型:
滿足一個不等關系我們可列一個不等式,滿足兩個不等關系可以列出兩個不等式。
設用x min將污水抽完,則x需同時滿足以下兩個不等式:
30x>1200, ①
30x<1500 ②
2)教師歸納一元一次不等式組的意義:
由于未知數x需同時滿足上述兩個不等式,那么類似于方程組,我們把這樣兩個不等式合起來,就組成一個一元一次不等式組。
(設計意圖:把實際問題轉換為數學模型,同時讓學生根據一元一次不等式和二元一次方程組的有關概念來類推一元一次不等式組的有關概念,滲透類比和化歸思想。)
4、問題2:怎樣確定不等式組中既滿足不等式①同時又滿足不等式②的x的可取值范圍?
1)教師分析:對于一元一次不等式組來說,組成不等式組的每一個不等式中都只含有一個未知數,
運用前面解一元一次不等式的知識,我們就能直接求出不等式組中的每一個一元一次不等式的解集。
2)得到解不等式組的第一個步驟:分別直接求出這兩個不等式的解集。學生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教師引導學生根據題意,容易得到:在這兩個解集中,由于未知數x既要滿足x>40,也要同時滿足x<50,因此x>40和x<50這兩個解集的公共部分,就是不等式組中x可以取值的范圍。
(設計意圖:讓學生在教師的引導下探究不等式組的解集及其解法,養成自主探究的良好學習習慣。)
5、問題3:如何求得這兩個解集的公共部分?
學生活動:將不等式①和②的解集在同一條數軸上分別表示出來。
(設計意圖:啟發學生可利用數軸的直觀性幫助我們尋找這兩個不等式解集的公共部分。)
教師活動:利用多媒體課件,用三種不同形式表示這兩個解集,幫助學生求得這個公共部分。
(設計意圖:結合介紹利用數軸確定公共部分的三種不同形式,突破本節課的難點,培養學生的觀察能力和數形結合的思想方法。)
形式一:用兩種不同顏色表示這兩個解集
1)通過設置以下幾個問題,要求學生通過觀察、分組討論、取值驗證,自主得出結論。
(1)這兩種顏色把數軸分成幾個部分?
(2)每一個部分分別表示哪些數?
(3) 請每一小組的同學從這幾個部分中各取2~3個數,分別代入兩個不等式中,同時思考:哪部分的數既滿足不等式①同時又滿足不等式②?
2)學生通過自主探究、合作交流,得到這3個問題的正確答案。
3)得出結論:
只有紅色和藍色重疊的部分才既滿足不等式①又同時滿足不等式②。因此,紅色和藍色重疊的部分就是我們要找的x的可取值范圍。
4)教師提問:兩個不等式解集的界點:即實數40、50所在的點是否落在紅色和藍色重疊的部分?教師引導學生利用學過的驗證法進行驗證,并得出結論:兩個界點沒有落在紅色和藍色重疊的部分。
(設計意圖:讓學生對一系列的問題進行自主分析和解答,充分調動學生學習的主動性和積極性。同時在上述過程中,利用不同顏色的直觀性,目的在于能讓學生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用畫斜線的方式:用兩種不同方向的斜線分別畫出x>40和x<50這兩個部分的解集。
類似地,引導學生得出結論:兩個解集的公共部分,就是圖中兩種不同方向斜線重疊的部分,從而得出結論。
形式三:結合課本,利用兩條橫線都經過的`部分來確定兩個解集的公共部分。
(設計意圖:介紹不同的形式,讓學生再一次鮮明、直觀地體會:x的可取值范圍是兩個不等式解集的公共部分;進一步培養學生的觀察能力和數形結合的思想方法。)
6、問題4:如何表示這個可取值范圍?
教師分析:在數軸上,未知數x落在實數40和50之間。而我們知道,數軸上的實數,它們從左到右的順序,就是從小到大的順序。因此,我們可將這三個數先按從小到大的順序書寫出來,再用小于號依次進行連接,記為40
7、小結并解決課本問題:原不等式組中x的取值范圍為40
(設計意圖:首尾呼應,完成了實際問題的研究,通過這個研究過程,讓學生進行感悟、歸納、領會知識的真諦。)
8、同時,類比一元一次不等式解集的幾何意義,教師再次進行歸納:
在數軸上,若在40
一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。
9、結合上述學習過程,讓學生和教師一起歸納解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)把這些解集分別在同一條數軸上表示出來;
(3)確定各個不等式解集的公共部分;
(4)寫出不等式組的解集。
(設計意圖:及時進行小結,使學生對所學知識更加的系統化。)
初中數學教學設計 4
現代教學論研究指出,從本質上講,學生學習的根本原因是問題。在數學課堂教學中,教師可根據不同的教學內容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環節中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。
本文將結合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。
1、注重問題情境的創設
著名數學家費賴登塔爾認為:“數學源于現實又寓于現實,數學教學應從學生所接觸的客觀實際中提出問題,然后升華為數學概念、運算法則或數學思想。”這一觀念既反映了數學的本質,同時說明了在數學課堂教學中創設問題情境的重要性。比如,在《有理數的加法》一節的教學導入時,我首先出示了一周來本班的積分統計表(表中的得分用正數表示,失分用負數表示,)讓學生觀察:
星期 一 二 三 四 五 六 合計
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結果我發現大多數同學能用“抵消”的方法統計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發現學生不知道該怎樣算。當學生產生這樣的認知沖突時我便引入了本節課要學習的內容,最后我用表中的數據分成了幾種類型,如正數加正數、負數加負數、正數加負數等,展開新知學習,教學效果較以前有明顯改觀。
本節課成功之處在于:
(1)導入的情境問題貼近學生的現實,調動了學生的積極性。
(2)情境問題為后面的教學埋下了伏筆,引發了學生的認知沖突。當然,情境問題的創設不當,會直接影響教學。比如,在《函數》一節的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發現學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數問題,只因為農村學生對該情境的`認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現“僵局”,也影響了后面的教學工作的勝利開展。
2、教學重點、難點處的問題設計
初中數學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結識拋物線》一節的教學重點就是做二次函數y=x2的圖像并根據圖像認識和理解函數的性質。而作圖過程又是一個難點問題,要從所畫的圖像中發現并歸納性質,首先得畫出較準確的函數圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:
(1)根據你畫的圖像,給自變量x任取一個值,函數y有唯一的值與它對應嗎?
(2)自變量x的范圍是什么?
(3)在0
學生通過對前兩個問題的思考和解決,既復習鞏固了函數的概念又進一步理解了圖像的無限延伸性。對問題(3),部分同學經過對x的小范圍內的取值、描點與連線之后觀察到了所畫的圖像是曲線型的,但是還有部分學生就是體驗不到這種形狀。在這種情況下,我用計算機演示,當所描出的點比較密集時所連的線是曲線而不是直線段,這樣才消除了學生的一些錯誤認識。
在隨后的觀察圖像歸納性質的探索與交流活動中,學生樂于探索,主動交流,積極發表自己的想法,根據圖像歸納出了好幾條性質。這樣,不但使重點得以突出、難點得到突破,而且發展了學生的思維。
3、例題或課堂練習中的問題設計
例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數學學習效果和培養學生思維的有效手段之一。數學課堂教學中,教師通過優選例題,精心設計層次分明的練習,能夠讓學生以積極的態度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數的圖像與性質》一節的教學中設計了一道這樣的問題:已知A(-2,y1)、B(-1,y2)、C(2,y3)三點都在反比例函數y=k/x(k>0)圖像上
(1)比較y1、y2、y3的大小關系。
(2)若D(a,y1)、E(b,y2)、F(c,y3)三點也在反比例函數y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關系。
教學中我發現多數學生對問題(1)采用了直接代入計算的方法得到結果對問題(2)顯然用代入法難以得到結果,這時,我讓學生小組討論來解決。經過討論后,學生A回答:“因為k>0時,反比例函數y隨x的增大而減小,而ay3。”學生B回答:“我們組用特殊值檢驗得出y2
4、在學習反思中的問題設計
初中學生學習數學的方法相對欠缺,學生“重結論,輕過程”的現象較普遍,對學習結果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發現學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格:
通過引導學生對錯因徹底分析與校正,學生明白了產生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結果發現,學生確實重視了錯誤,效果明顯有所好轉。
總之,在數學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。
初中數學教學設計 5
一、教材分析
反比例函數是初中階段所要學習的三種函數中的一種,是一類比較簡單但很重要的函數,現實生活中充滿了反比例函數的例子。因此反比例函數的概念與意義的教學是基礎。
二、學情分析
由于之前學習過函數,學生對函數概念已經有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節課的教學奠定的一定的基礎。
三、教學目標
知識目標:理解反比例函數意義;能夠根據已知條件確定反比例函數的表達式.
解決問題:能從實際問題中抽象出反比例函數并確定其表達式. 情感態度:讓學生經歷從實際問題中抽象出反比例函數模型的過程,體會反比例函數來源于實際.
四、教學重難點
重點:理解反比例函數意義,確定反比例函數的表達式.
難點:反比例函數表達式的確立.
五、教學過程
(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;
(2)某住宅小區要種植一個面積1000m2的矩形草坪,草坪的長y(單位:m)隨寬x(單位:m)的變化而變化。
請同學們寫出上述函數的表達式14631000(2)y= tx
k可知:形如y= (k為常數,k≠0)的函數稱為反比例函數,其中xx(1)v是自變量,y是函數。
此過程的目的在于讓學生從實際問題中抽象出反比例函數模型的過程,體會反比例函數來源于實際. 由于是分式,當x=0時,分式無意義,所以x≠0。
當y= 中k=0時,y=0,函數y是一個常數,通常我們把這樣的.函數稱為常函數。此時y就不是反比例函數了。
舉例:下列屬于反比例函數的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習讓學生更加了解反比例函數的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設其解析式(函數關系式)
已知y與x成反比例,則可設y與x的函數關系式為y=k x?1k已知y+1與x成反比例,則可設y與x的函數關系式為y+1=xkxkxkxkx2x已知y與x-1成反比例,則可設y與x的函數關系式為y=
已知y+1與x-1成反比例,則可設y與x的函數關系式為y+1= k x?1此過程的目的是為了讓學生更深刻的了解反比例函數的概念,為以后在求函數解析式做好鋪墊。
例:已知y與x2反比例,并且當x=3時y=4
(1)求出y和x之間的函數解析式
(2)求當x=1.5時y的值
解析:因為y與x2反比例,所以設y?k,只要將k求出即可得到yx2和x之間的函數解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數并確定其表達式最后學生練習并布置作業
通過此環節,加深對本節課所內容的認識,以達到鞏固的目的。
六、評價與反思
本節課是在學生現有的認識基礎上進行講解,便于學生理解反比例函數的概念。而本節課的重點在于理解反比例函數意義,確定反比例函數的表達式.應該對這一方面的內容多練習鞏固。
初中數學教學設計 6
教學目標:
1、經歷收集數據、分析數據的活動,體會統計在實際生活中的應用。
2、收集統計在生活中應用的例子,整理收集數據的方法。
3、在解決問題的過程中,整理所學習的統計圖,和統計量,能用自己的語言描述過各種統計圖的特點,掌握整理收集數據的方法。
教學過程:
一、課前預習,出示預習提綱:
1、我們學習了哪幾種統計圖?
2、這幾種統計圖各有什么特點?
3、概率的知識有哪些?
二、展示與交流
(一)提出問題
1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨立列出幾個你想調查的問題。(寫在練習本上)
3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)
4、接著全班匯報交流(師羅列在黑板上)
師:大家想調查這么多的問題,現在我們班選擇其中有價值又能實施的問題進行調查。(師根據生的回答進行歸納、整理)
(二)收集數據和整理數據
1、師:調查這幾個問題,你需要收集哪些數據?怎么樣收集這些數據?與同伴交流收集數據的方法。
2、師:開展實際調查的話,如何進行調查比較有效?在調查的時候,大家需要注意什么?
(三)開展調查
1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數據的活動,然后把數據記錄下來,并進行整理。
2、師:誰來說一說你們小組是怎么樣分工,怎么樣調查和記錄數據的?(指名匯報)
3、全班匯總、整理、歸納各小組數據。(板書)
4、師:分析上面的`數據,你能得到哪些信息?
5、師:根據整理的數據,想一想繪制什么統計圖比較好呢?
6、師:根據這些信息,你還能提出什么數學問題?
(四)回顧統計活動
1、師:在剛才的統計活動,我們都做了些什么?你能按順序說一說嗎?
師板書:提出問題——收集數據——整理數據——分析數據——作出決策。
2、收集在生活中應用統計的例子,并說說這些例子中的數據告訴人們哪些信息。(全班交流)
指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?
3、結合生活中的例子說說收集數據有哪些方法?
(1)先讓學生在小組內交流,引導學生結合例子(充分利用第2題中收集來的實例)來說說自己的方法。
(2)師歸納:常用的收集數據的方法有:查閱資料、詢問他人、調查實驗等。
4、師:同學們,我們已經對統計表和統計圖進行了系統的學習,回憶一下我們已經學過了哪些統計圖,對這些統計圖,你已經知道了哪些知識?
初中數學教學設計 7
一、內容和內容解析
平行四邊形是“空間與圖形”領域中最基本的幾何圖形,它在生活中有著十分廣泛的應用,這不僅表現在日常生活中有許多平行四邊形的圖案,還包含其性質在生產、生活各領域的實際應用。
平行四邊形,是建立在前面學習了四邊形的概念和性質的基礎之上,將要學習的特殊的四邊形。本節課是平行四邊形的第一課時,主要研究平行四邊形的概念和邊、角的性質。
關于平行四邊形的概念,在小學,學生已經學過,并不會感到生疏,但對于這個概念的本質屬性,理解的并不是十分深刻,所以,本節課的學習,并不是簡單的重復。本節課,平行四邊形的定義采用的是內涵定義法,即“種概念+屬差=被定義的概念”。在平行四邊形的定義中,大前提是“四邊形(種概念)”,條件是“兩組對邊分別平行(屬差)”。“兩組對邊分別平行”是平行四邊形獨有的、用以區別于一般四邊形的本質屬性,這也是平行四邊形概念的核心之所在。平行四邊形的概念,揭示了平行四邊形與四邊形的隸屬關系、區別與聯系,反映了平行四邊形的本質屬性。同時,它既是平行四邊形的判定,又可以作為平行四邊形的一個性質。
關于平行四邊形邊、角的性質,“平行四邊形的對邊相等”相對于定義中的“兩組對邊分別平行”,是由位置關系向數量關系的一種延伸;“平行四邊形的對角相等”相對于“兩組對邊分別平行”,是由“相鄰的角互補”產生的思維的一種深化。同時,兩條性質的探究,經歷的是“感知、猜想、驗證、概括、證明”的認知過程;兩條性質的研究,先從邊分析,再從角分析,再到下一節課的從對角線分析,提供的是研究幾何圖形性質的一般思路;兩條性質的證明,滲透的`是將四邊形問題轉化為三角形問題的一種轉化思想,而添加對角線,介紹的是將四邊形問題轉化為三角形問題的一種常用的轉化手段。
在本章的后續學習中,對于幾種特殊的四邊形,其定義均采用的是內涵定義法,并且矩形和菱形的定義,均以平行四邊形作為種概念,所以平行四邊形的概念作為“核心概念”當之無愧。關于平行四邊形的性質,也是后續學習矩形、菱形、正方形等知識的基礎,這些特殊平行四邊形的性質,都是在平行四邊形性質基礎上擴充的,它們的探索方法,也都與平行四邊形性質的探索方法一脈相承,因此,平行四邊形的性質,在后續的學習中,也是處于核心地位。
教學重點:平行四邊形的概念和性質。
二、目標和目標解析
(1)教學目標:
①掌握平行四邊形的概念及性質。
②學會用分析法、綜合法解決問題。
③體會特殊與一般的辯證關系。
④逐步養成良好的個性思維品質。
(2)目標解析:
①使學生掌握平行四邊形的概念,掌握平行四邊形的對邊相等,對角相等的性質,會根據概念或性質進行有關的計算和證明。
②通過有關的證明及應用,教給學生一些基本的數學思想方法。使學生逐步學會分別從題設或結論出發,尋求論證思路,學會用綜合法證明問題,從而提高學生分析問題解決問題的能力。
③通過四邊形與平行四邊形的概念之間和性質之間的聯系與區別,使學生認識特殊與一般的辯證關系,個性與共性之間的關系等。使學生體會到事物之間總是互相聯系又相互區別的,進一步培養辯證唯物主義觀點。
④通過對平行四邊形性質的探究,使學生經歷觀察、分析、猜想、驗證、歸納、概括的認知過程,培養學生良好的個性思維品質。
初中數學教學設計 8
1、學習方式:
對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩個三角形間最簡單,最常見的關系。它不僅是學習后面知識的基礎,并且是證明線段相等、角相等以及兩線互相垂直、平行的重要依據。因此必須熟練地掌握全等三角形的判定方法,并且靈活的應用。為了使學生更好地掌握這一部分內容,遵循啟發式教學原則,用設問形式創設問題情景,設計一系列實踐活動,引導學生操作、觀察、探索、交流、發現、思維,使學生經歷從現實世界抽象出幾何模型和運用所學內容,解決實際問題的過程,真正把學生放到主體位置。
2、學習任務分析:
充分利用教科書提供的素材和活動,鼓勵學生經歷觀察、操作、推理、想象等活動,發展學生的空間觀念,體會分析問題、解決問題的方法,積累數學活動經驗。培養學生有條理的思考,表達和交流的能力,并且在以直觀操作的基礎上,將直觀與簡單推理相結合,注意學生推理意識的建立和對推理過程的理解,能運用自己的方式有條理的表達推理過程,為以后的證明打下基礎。
3、學生的認知起點分析:
學生通過前面的學習已了解了圖形的全等的概念及特征,掌握了全等圖形的對應邊、對應角的關系,這為探究三角形全等的條件做好了知識上的準備。另外,學生也具備了利用已知條件作三角形的基本作圖能力,這使學生能主動參與本節課的操作、探究成為可能。
4、教學目標:
(1) 學生在教師引導下,積極主動地經歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數學結論的過程。
(2) 掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩定性,能用三角形的全等解決一些實際問題。
(3) 培養學生的`空間觀念,推理能力,發展有條理地表達能力,積累數學活動經驗。
5、教學的重點與難點:
重點:三角形全等條件的探索過程是本節課的重點。從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經歷了知識的形成過程,體會了一種分析問題的方法,積累了數學活動經驗,這將有利于學生更好的理解數學,應用數學。
難點:三角形全等條件的探索過程,特別是創設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。
根據初一學生年齡、生理及心理特征,還不具備獨立系統地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發揮教師的主導作用,適時點撥、引導,盡可能調動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發展。
6 、教學過程
教學步驟
教師活動
學生活動
教學媒體(資源)和教學方式
復習過渡
引入新知
創設情景
提出問題
建立模型
探索發現
歸納總結
得出新知鞏固運用
及其推廣
反思小結
提煉規律
電腦顯示,帶領學生復習全等三角定義及其性質。
電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊
分別對應相等,三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等.但是,是否一定需要六個條件呢?條件能否盡可能少嗎?
對學生分類中出現的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發展學生個性思維。
初中數學教學設計 9
教材分析
1.這節的重點為:去括號。因此,本節所學的知識實際上就是對前面所學知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習來掌握。
2.去括號是整式加減的一個重要內容,也是下一章一元一次方程的直接基礎,也是今后繼續學習整式的乘除、因式分解、方程,以及分式、函數等的重要基礎。
學情分析
去括號法則是教材上的教學內容,學生學習時會經常出現錯用法則的現象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:
(1)“去括號法則”,增加了記憶負擔和出錯的機會,容易出錯;
(2)去括號的法則增加了解題長度,降低了學習效率;
(3)用乘法分配律去括號的學習是同化而非順應,易于理解與掌握;
(4)用乘法分配律去括號是回歸本質,返璞歸真,且既可減少學習時間,又能提高運算的'正確率。
教學目標
1.熟練掌握去括號時符號的變化規律;
2.能正確運用去括號進行合并同類項;
3.理解去括號的依據是乘法分配律。
教學重點和難點
重點
去括號時符號的變化規律。
難點
括號外的因數是負數時符號的變化規律。
教學過程
一、創設情景問題
青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達到120千米/時。
請問:在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?
解:這段鐵路的全長為100t+120(t-0.5)(千米)
凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。
提出問題,如何化簡上面的兩個式子?引出本節課的學習內容。
二、探索新知
1.回顧:
1你記得乘法分配率嗎?怎么用字母來表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3
2.探究
計算(試著把括號去掉)
(1)13+(7-5)(2)13-(7-5)
類比數的運算,去掉下面式子的括號
(3)a+(b-c)(4)a-(b-c)
3.解決問題
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括號前,括號內有幾項、是什么符號?去括號后呢?
去括號的依據是什么?
三、知識點歸納
去括號法則:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;
如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
注意事項
(1)去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;
(2)括號內原有幾項去掉括號后仍有幾項.
四、例題精講
例4化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、鞏固練習
課本P68練習第一題.
六、課堂小結
1.今天你收獲了什么?
2.你覺得去括號時,應特別注意什么?
七、布置作業
課本P71習題2.2第2題
初中數學教學設計 10
摘 要:本著對課堂練習分層教學設計的要求與目的,本節課設計了三個層次。針對學困生的特殊情況,課堂練習通過誦讀定理和抄寫例題來使其加深印象;在鞏固練習中中等生要求書面寫出步驟并進行展示;對于優等生在快結束本節課時拋出變式讓他們進行思考,并交流思路。這三個層次都貫穿于整個課堂教學,使每位學生上課都有事可做,根據自己的能力來解決能力范圍內的問題。
關鍵詞:相切;環節說明;分層體現;
一、案例背景介紹
(一)教學環境
在我們著手進行課題《初中數學分層教學方式與策略研究》的研究開始后,大家齊心協力探索、研究方法,組內各種分層招數可謂是百花齊放,為此我代表課題組上了一節分層教學的展示課,以供同仁觀摩點評,為促進數學教學的分層設計向更好的方向前行作貢獻。
(二)學生情況
我校學生大部分來自韓莊鎮不同的自然村,由于小學地域的不同,所以學生的基礎各不相同,很多學生的基礎還相當薄弱。因此這種情況特別適合分層教學。
(三)教材情況
本課是人教版初三數學上冊第24章圓第2節點和圓、直線和圓的位置關系中的一個課時:直線和圓相切的情況。學生已經有了點和圓的位置關系的基礎以及直線和圓的位置關系的數量的認識,本節課研究直線與圓的特殊位置關系相切,將相切從位置到數量的邏輯自然過渡,進而引出圓的切線的判定和性質。重點是圓的切線的判定定理和性質定理。難點是判定定理的理解和性質定理證明中反證法的理解。
二、案例內容設計及說明
環節一:復習引入
通過回顧舊知再次加深圓與直線的位置關系,在全班集體朗讀中體會d與r的關系,并順勢將位置關系量化這一問題顯化,同時自然引出特殊情況――相切
環節說明:俗話說書讀百遍,其意自現。數學概念在朗讀中更能逐漸理解其本質,因此不光語文需要朗讀,數學也要朗讀。而且針對我班學困生上課聽不懂,不會做的現象,這樣來設計復習方式更能調動我班學生學習的動力,讓每位學生都參與到課堂教學中來。這也是這個環節分層的體現。
環節二:新知探究
活動
1、引導學生從直線與圓相切的位置及數量關系上來深入探究,通過動態演示來理解一條直線何時變成圓的切線。
環節說明:上節課得到的圓與直線相切是數量上的關系,通過動態的演示讓學生明確位置的變化,從而總結出切線的判定。但是引導很重要,從兩個方面去觀察:直線經過哪里?與圓的半徑有什么位置關系?需要老師點撥。并要等待學生來總結,不能操之過急。分層體現1對觀察的結果分別讓兩位程度較差的學生回答,再讓中等程度的學生來總結;體現2對定理的數學表達讓全體學生寫在練習本上,老師選擇展示,并修改;體現3對總結出的判定進行朗讀。
活動
2、將判定的題設和結論互換后的探究。
環節說明:反證法在過三點做圓時已有所涉及,所以在這里用反證法證明切線的性質時讓學生互相交流討論然后進行匯報就行,不要進行過多的引申,否則淡化了主題。分層體現1討論交流時采取師傅和徒弟在同一組,師傅負責解釋證明的方法;體現2數學語言的書寫讓學生自己寫并派代表寫在黑板上。
環節三:鞏固和應用
通過判斷題加深對切線的判定和性質的理解。通過師生共同分析解決幾何解答證明題,并由學生書寫證明步驟。
環節說明:判斷題中設置了3道小題,并給出了反例,能使學生更加明確定理的意義。這里教學的.分層體現在針對反例來問學困生為什么不對,讓學生說出違背了所需條件的哪一條,強化切線判定條件在這部分學生頭腦中的印象。例題的分析采取了小組討論交流的方法,與環節二中的分組一樣,分層體現在“師帶徒”弄清解題思路,師傅增強了解題的邏輯性,更嚴密,徒弟學會了解題的分析,拓寬了視野,打開了思路。在有思路的前提下,全班安靜書寫步驟。還可以展示在投影下,由學生來評判書寫的是否清楚。
環節四:課堂小結
在小結中,除了總結出本節課所學的判定和性質外,將相關的判定和性質做一歸納很有必要,“在不斷的總結中收獲、進步”不是嗎?同時提出下節課要學習的相關性質更能激起學生學習的積極性。
環節說明:在小結的分層中判定由程度稍差點的學生總結,哪怕照著書上找都行,并進行誦讀,使其再次熟知所學知識。在性質的總結中,老師拋出兩條本節未涉及的性質給學生,讓學生課后思考證明,在下節課時可由學生簡要發表見解并證明。
環節五:拓展練習
通過引導學生添加輔助線,點撥學生圓中常用輔助線的做法,分情況添加恰當的輔助線。這兩個練習旨在拓展尖子生的思維。
環節六:作業布置
通過分層布置,使每位學生都能在自己能力范圍內進行鞏固練習。
環節說明:作業
1、重點面向學困生考察其掌握基礎的程度。作業
2、針對待優生夯實基礎的基礎上,提高其運用能力。作業
3、是設計的培優計劃,對學有余力的學生來說是個很好的鍛煉機會。
三、案例分析與反思
實際上本節課中圓的切線的判定定理是為了便于應用而對直線和圓相切的定義改寫得到的一種形式,而圓的切線的性質定理的證明僅僅要求學生再次感受反證法,并不要求會應用,所以本節的設計在分層中很注重理解和感知,通過互幫互助和朗讀感知達到難點的突破,另外圓是學生學習的第一個曲線形,由直線形到曲線形,在知識上是一個飛躍,本節利用圖形運動變化過程發現其中圖形的性質,做好了知識前后的銜接,同時加強了新舊知識的聯系,發揮出了知識的遷移作用。類比也是本節課所用到的一個重要的學習方法,而且在教授過程中難度的控制非常適當,分層的影子處處可見。縱觀整節課的分層之處進入都很自然,也落到了實處,但分層效果的檢測沒有體現出來,這也是遺憾之處。
初中數學教學設計 11
隨著科學技術的發展,教育資源和教育需求也隨之增長和變化。我校進行了初中數學分層教學課題研究,而分層次備課是搞好分層教學的關鍵,教師應在吃透教材、大綱的情況下,按照不同層次學生的實際情況,設計好分層次教學的全過程。本文將結合本人的教學經驗,對分層教學教案設計進行初步探討。
1、教學目標的制定
制定具體可行的教學目標,先要分清哪些屬于共同目標,哪些屬于層次目標。并在知識與技能、過程與方法、情感態度與價值觀三個方面對不同層次的學生制定具體的要求。
2、教法學法的制定
制定教法學法應結合各層次學生的具體情況而定,如對A層學生少講多練,注重培養其自學能力;對B層學生,則實行精講精練,注重課本上的例題和習題的'處理;對C層學生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎知識和基本技能。
3、教學重難點的制定
教學重難點的制定也應結合各層次學生的具體情況而定。
4、教學過程的設計
4.1情境導向,分層定標。教師以實例演示、設問等多種方法導入新課。要利用各種教學資料創設恰當的學習情境為各層學生呈現適合于本層學生水平學習的內容。
4.2分層練習,探討生疑。學生對照各自的目標分層自學。教師要鼓勵學生主動實踐,自覺地去發現問題、探討問題、解決問題。
4.3集體回授,異步釋疑。“集體回授”主要是針對人數占優勢的B層學生,為解決具有共性的問題而組織的一種集體教學活動。教師為那些來不及解決的、不具有共性的問題分先后在層內釋疑即“異步釋疑”。
5、練習與作業的設計
教師在設計練習或布置作業時要遵循“兩部三層”的原則。“兩部”是指練習或作業分為必做題和選做題兩部分;“三層”是指教師在處理練習時要具有三個層次:第一層次為知識的直接運用和基礎練習;第二、三兩層次的題目為選做題,這樣可使A層學生有練習的機會,B、C兩層學生也有充分發展的余地。
分層教學下教師不能再“拿一個教案用到底”,而要精心地設計課堂教學活動,針對不同層次的學生選擇恰當的方法和手段,了解學生的實際需求,關心他們的進步,改革課堂教學模式,充分調動學生的學習主動性,創造良好的課堂教學氛圍,形成成功的激勵機制,確保每一個學生都有所進步。
初中數學教學設計 12
一、教材分析
全期共有六章。新授課程主要有一元一次不等式組、二元一次方程組、平面上直線的位置關系和度量關系、多項式的運算 、軸對稱圖形、數據的分析與比較。
二、學情分析
本學期是本年級學生初中學習階段的第二學期。通過上期的學習,大多數學生對學習數學產生了濃厚的學習興趣。更有像陳琦、嚴細毛、瞿俐純等同學更是對數學探究活動情有獨衷。上期期末考試中,0901整體水平稍高于兄弟班級,但有兩極分化的趨勢。0902班的及格率稍高于兄弟班,但低分段學生高于10%,而且這部分學生對學習缺乏應有的熱情和自信,有自暴自棄之嫌。
三、目標任務
本學期的數學教學要從學生的實際問題出發,積極引導學生觀察、思考、探究、討論、歸納數學問題,要鼓勵學生去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題。教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內容,掌握應試技巧和數學思想方法,提高綜合素質,培養創新意識和探索能力。在期中、期末考試中力爭生均分70分左右,合格率60%以上,優秀率30%以上,并將低分率控制到10%以下。
四. 主要教學措施
1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養學生的學習興趣和個性品質。
2、把握學生思想動態,及時與學生溝通,搞好師生關系。
3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績。
4、改進教學方法,用多媒體課件,實物等創設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的'師生互動、生生互動的機會。
5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘。
6、 開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養興趣,提高能力。
初中數學教學設計 13
新學期已到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定初中一年級數學教學設計方案:
一、教材分析:
本學期是本年級學生初中學習階段的第二學期、新授課程主要有相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組、數據的收集、現行教材、教學大綱要求學生從身邊的實際問題出發,乘坐觀察、思考、探究、討論、歸納之舟,去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教師在靈活選用現有教材的基礎上,應適度引用新例,把初中數學各單元的知識明晰化、條理化、規律化,激勵學生自主、合作、探究學習,培養學習興趣和習慣品質、
二、教學目標:
本學期的數學教學要從學生的實際問題出發,積極引導學生觀察、思考、探究、討論、歸納數學問題,要鼓勵學生去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內容,掌握應試技巧和數學思想方法,提高綜合素質,培養創新意識和探索能力、在期末考試中力爭生均分87分左右,及格率75%以上,并將低分率控制到10%以下,綜合成績縣前五、
三、教學措施:
1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養學生的學習興趣和個性品質、
2、把握學生思想動態,及時與學生溝通,搞好師生關系、
3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績、
4、改進教學方法,用掛圖,實物創設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會、
5、精講多練,在教學新知識的`同時,注重舊知識的復習,使所學知識系統化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘、
6、開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養興趣,提高能力、
7、加強培優補中促差生的個別輔導,因材施教,培養學生的個性特長、特別要多鼓勵后進生,提高他們的學習興趣,培養他們良好的學習習慣:
(1)課前預習習慣;
(2)積極思考,主動發言習慣;
(3)自主作業習慣;
(4)課后復習習慣。
初中數學教學設計 14
一、案例實施背景
本節課是20XX-20XX學年度第一學期開學第七周筆者在長青中學的多媒體教室里上的一節公開課,課堂中數學優秀生、中等生及后進生都有,所用教材為北師大版義務教育教科書七年級數學(上冊)。
二、案例主題分析與設計
本節課是北師大版義務教育教科書七年級數學(上冊)——科學記數法,它是在學習乘方的基礎上,研究更簡便的記數方法,是第二章有理數及其運算的重要組成部分。 《數學課程標準》強調:數學教學是數學活動的教學,是師生之間、生生之間交往互動與共同發展的過程;動手實踐,自主探索,合作交流是孩子學習數學的重要方式;合作交流的學習形式是培養孩子積極參與、自主學習的有效途徑。本節課將以“生活·數學”、“活動·思考”、“表達·應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創設問題情境,引導學生活動,并在活動中激發學生認真思考、積極探索,主動獲取數學知識,從而促進學生研究性學習方式的形成,同
時通過小組內學生相互協作研究,培養學生合作性學習精神。
三、案例教學目標
1、知識與技能:掌握科學記數法的方法,能將一些大數寫成科學記數法。
2、過程與方法:在尋找科學記數法的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程。
3、情感態度與價值觀:通過科學記數法的總結,使學生形成數形結合的數學思想方法,以及知識的遷移能力、創新意識和創新精神。
四、案例教學重、難點
1、重點:正確運用科學記數法表示較大的數
2、難點:正確掌握10的冪指數特征,將科學記數法表示的數寫成原數
五、案例教學用具
1、教具:多媒體平臺及多媒體課件、圖片
六、案例教學過程
一、創設情境,興趣導學:
1、展示學生收集的非常大的數,與同學交流,你覺得記錄這些數據方便嗎?
2、展示課本第63頁圖片,現實中,我們會遇到一些比較
大的數,如世界人口數、地球的半徑、光速等,讀寫這樣大的數有一定的困難。
師:(展示剛才演示過的3個大數)我們能不能找到更好的記數方法使下列各數更加便于讀、寫?請同學們六個人一組,分組進行討論。
(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000
生1:答:13.7億,640萬,3億。
師:回答正確。這是數字加上單位的記數方法,在小學已經學過,是比較常用的一種方法,可是它有一定的局限性。如果我在3億后面再加上好多個0,那么這種記數方法還好用嗎? 生:不好用。(讓學生意識到以前所學的方法不夠用了) 師:接下來我們一起來探索新的記數方法。
分析:在讀寫大數時使學生感覺到不方便,從實際生活的需要,自然引入課題,需要尋找一種更簡單的方法記數,為新課創設了良好的問題情境。
二、嘗試探索,講授新課:
1、探索10n的特征
計算一下102、103、104、105、1010你發現什么規律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000
(觀察并思考,小組討論)
(1)結果中“0”的個數與10的指數有什么關系?
(2)結果的位數與10的指數有什么關系?
2、練習:將下列個數寫成只有一位整數乘以10n的形式。
(1)500(2)3000(4)40000
師:(學生完成之后)可見這種表示方法不僅書寫簡短,同時還便于讀數。這就是我們本節課研究的'內容—科學記數法。 分析:通過教師引導,學生小組討論,合作探究,成功地找到表示大數的簡便記數方法——科學記數法。
4、科學記數法:
像上面這樣,把一個大于10的數表示成 a×10n的形式(其中1≤a<10,a是整數數位只有一位的數,n是整數),這種記數方法叫做科學記數法。
(思考,小組討論)
10的指數與結果的位數有什么關系?
分析:這是本節課的重難點:10的冪指數n與原數的整數位數之間的關系。從特殊數據出發,尋找解決問題的方案,這符合“特殊到一般”的認知規律。在探究過程中,學生的探究活動體現了“化繁為簡”、“分析歸納”的數學思想。
三、鞏固新知,知識運用:
1、將下列各數寫成科學記數法形式。
(1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科學記數法表示是多少米? 分析:學生的模仿能力強,在分析討論10的指數與結果的位數有什么關系時,會與前面曾經討論過的10n聯系起來,也可以對知識進行遷移和回顧。再加上學生好奇心都特別強,很想將自己總結出來的結論加以應用,針對以上學生特點,給出相應的練習題。這樣學生能夠體會到學以致用的樂趣,從而調動學生自主學習的積極性。
(觀察并思考,小組討論)
5、如何將一個用科學記數法表示的數寫成原數?
a×10n將a的小數點向右移動n位原數
分析:這是本節課另一個重點,也是知識的逆向鞏固,學生通過尋找寫出原數的方法,更加明白在寫科學記數法時,如何確定10的指數,同時也學會了如何寫出原數。
練習:人體內約有2.5×10 5個細胞,其原數為多少個?
七、教學反思:
數學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為“過程”不僅能引導學生更好
地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數學知識解決問題的意識;感受生活與數學的聯系,獲得“情感、態度、價值觀”方面的體驗。
初中數學教學設計 15
新課程標準指出:“問題是思想方法、知識積累和發展的邏輯力量,是生長新知識、新方法的種子。”有問題才有探究,有探究才有發展、有創新。學生思維的過程受情境的影響。良好的思維情境會激發思維動機,喚起求知欲望;不好的思維情境會抑制學生的思維熱情。因此,創設良好的思維情境在數學教學中就顯得十分重要。教師通過自己的教學活動,有意識地培養學生善于在好的問題情景下主動建構新知識,積極參與交流和討論,不斷提高學習能力,發展創新意識。
一、聯系學生的生活實際,創設問題情境
生活離不開數學,數學也離不開生活。實踐證明:聯系學生已有的生活經驗和學生熟悉的事物入手展開教學,有利于學生更好的掌握數學知識。
例如在教學菱形性質時,導入時是這樣設計的:
1、我們大家在日常生活中見過哪些菱形圖案?(看誰說的多)學生爭先恐后地說:
(1)吃過的菱形形狀的食物
(2)春節時門上貼的剪紙花
(3)居室裝飾地板磚
(4)中國結
(5)菱形衣帽架等。
2、為什么把這些圖案設計成菱形呢?
3、菱形到底有哪些特殊的性質和運用呢?(板書課題) 通過本節課的學習之后大家可以總結出來。
然后通過畫圖和電腦顯示,讓學生去猜想,去探究,去發現,去論證。從而弄清了菱形的定義、性質、面積公式及簡單運用,
然后讓學生思考日常生活中還有哪些菱形性質方面的應用。
這樣通過創設問題情境,讓學生產生一種好奇,一種對知識的渴望,為探究活動創造了良好的條件,為本節課的成功創造了條件。同時讓學生感受到了數學問題來源于生活。讓學生多留意身邊的事物轉化成數學問題。但教學中要注意從實際出發,創設學生所熟悉的喜聞樂見的`東西。同時不是為情趣而情趣,要注意增加情趣的內涵。注意經常引導學生用數學的眼光看待周圍的事物,培養學生數學問題意識。
二、變更表述形式,創設問題情境
在數學教學中教師可以運用直觀形象的具體材料,創設問題情境,設障布疑,激發學生思維的積極性和求知需要的一種教學方法——有時可通過變更問題的表述形式,引發學生興趣。 例如:“等腰三角形的判定定理”的教學,為引出等腰三角形的判定定理,通常提出問題:“如圖(1),△ABC要判定它是等腰三角形
BC A 有哪些方法呢?”這樣出示問題顯得單調又乏味。為了同樣的教圖(1)學目的(引導學生獲得判定定理),教師若能根據“性質定理”與“判定定理”的內在聯系,在引導學生性質定理后,提出這樣一個實際問題“如圖(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂沒了,只留下一條底邊BC和一個底角∠C,試問能否把原來的△ABC重新畫出來?”不僅引發了生動活潑的討論形式,而且也收到良好的引發效果,(有的先度量∠C度數,再以BC為邊作∠B=∠C;有的取BC中點D,過D作BC的垂線等)。由此可見,在定理或概念性較強的性質的教學中,應盡力創設問題情境,使學生認識到所學內容的意義,使他們產生學習需要,形成學習的內驅力,誘發學生積極思維,在教師的指導下,讓學生主動去探索解決問題的辦法,在實踐中培養學生的創造能力。
三、猜想驗證法,創設問題情境
在數學教學中,利用猜想驗證的課堂教學模式創設問題情境,可以積極的促進學生有效的參與課堂教學,學生興趣高漲,主動的進行猜想驗證。
例如,在教學“三角形的內角和”時,我先請同學們試先量一量自己準備好的三角形的每一個內角的度數,然后告訴我其中兩個內角的度數,我迅速的說出第三個內角的度數。同學們都感到很驚訝!為什么老師能很快的說出第三個內角的度數呢?通過觀察他們發現:每個三角形的內角和都是180度。我問他們是不是任何一個三角形的內角和都是180度呢?他們的回答是肯定的。我說這只不過是你們的一個猜想,下面就請同學們利用你手中的學具來驗證你的猜想。于是,同學們立刻想到了手中的三角板,積極的行動起來證明自己的猜想。
總之,創設問題情境,培養學生問題意識,一方面能激發學生學習動機、培養創新思維,是新課程理念下數學教學的重要環節。另一方面有助于學生積極地建構數學知識,在情境中自主的參與探究和相互交流,從而達到意義建構的目的,提高課堂教學的有效性。當然教學沒有最好,只有更好,讓我們在今后的教學過程中不斷探索,不斷創新,爭取更打的進步。
初中數學教學設計 16
一教學目標
1.通過案例理解正比例函數,能列出正比例函數關系式
2.教會學生應用正比例函數解決生活實際問題的能力
二教學重點
理解正比例函數的概念
三教學難點
利用正比例函數解決生活實際問題
四教學過程
【提出問題】
1.《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數圈,假設他從德州到加州行進了千米,耗費了他150天時間。
(1)阿甘大約平均每天跑步多少千米?
(3)阿甘一個月(30天)的行程是多少千米?
【生】列算式回答
【師】點評總結
2.寫出下列變量間的函數表達式
(1)正方形的周長l和半徑r之間的關系【進一步抽象問題讓學生思考】
(2)大米每千克四元,則售價y元與數量x(kg)的函數關系式是什么?
(3)下列函數關系式有什么共同點?(小組合作)【分析共同點和不同點,找出規律】
(1)y=200x(2) l=2∏r(3) m=
【生回答,師點評】
【引入新課】
1、正比例函數的概念:一般地,形如y=kx (k≠0)的函數,叫做正比例函數,其中k叫做比例系數.【板書概念,引導學生分析正比例函數的定義】
2 、【例題講解】
例1在同一坐標系里,畫出下列函數的圖像:y==x y=3x
解:【略】 【掌握函數圖像的畫法:列表,描點,連線】
3、練習
(1)已知正比例函數y=kx.當x=3時y=6 。求k的值
(2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的?當銷售金額為360元時,則售出了多少本這種筆記本?
五課外作業
【反思】
由于函數的概念比較抽象,學生不容易理解。而理解函數的'概念是教學的重點。這節課首先通過實例,回顧函數的概念,其次抽象提出正比例函數關系式,由學生觀察得到特點,然后引出正比例函數的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數解決生活中的問題。
初中數學教學設計 17
一、學情分析
八年級學生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節課是人教版八年級第十八章第一節的內容,教學內容是勾股定理公式的推導、證明及其簡單的應用。本節課是在學生已經掌握了直角三角形有關性質的基礎上進行學習的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數量關系,將數與形密切聯系起來,為以后學習四邊形、圓、解直角三角形等數學知識奠定了基礎。它有著豐富的歷史背景,在數學的發展中起著重要的作用,在現實生活中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
三、教學目標設計
知識與技能
探索勾股定理的內容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
(1)通過觀察分析,大膽猜想,探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
(2)在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學過程,并體會數形結合和從特殊到一般的思想方法。
情感態度與價值
(1)在探索勾股定理的過程中,培養學生的合作交流意識和探索精神,增進數學學習的信心,感受數學之美,探究之趣。
(2)利用遠程教育資源介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。
四、教學重點難點
教學重點
探索和證明勾股定理 ·教學難點
用拼圖的方法證明勾股定理
五、教學方法
(學法)“引導探索法”
(自主探究,合作學習,采用小組合作的方法。
六、教具準備
課件、三角板
七、教學過程設計
教學環節1
教學過程:創設情境探索新知 教師活動:出示第24屆國際數學家大會的會徽的圖案向學生提問
(1) 你見過這個圖案嗎?
(2) 你聽說過“勾股定理”嗎?
學生活動:學生思考回答
設計意圖:目的在于從現實生活中提出“趙爽弦圖”,進一步激發學生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學環節2 教學過程:實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導學生探索
學生活動:猜想實驗合作交流畫圖測量拼圖驗證
設計意圖:滲透從特殊到一般的數學思想。為學生提供參與數學活動的時間和空間,發揮學生的'主體作用;讓學生自己動手拼出趙爽弦圖,培養他們學習數學的成就感。通過拼圖活動,使學生對定理的理解更加深刻,體會數學中的數形結合思想,調動學生思維的積極性,激發學生探求新知的欲望。給學生充分的時間與空間討論、交流,鼓勵學生敢于發表自己的見解,感受合作的重要性。
教學環節3 教學過程:解決問題應用新知
教師活動:出示例題和練習
學生活動:交流合作,解決問題
設計意圖:通過運用勾股定理對實際問題的解釋和應用,培養學生從身邊的事物中抽象出幾何模型的能力,使學生更加深刻地認識數學的本質:數學來源于生活,并能服務于生活,順利解決如何將實際問題轉化為求直角三角形邊長的問題,培養學生的數學應用意識。
教學環節4 教學內容:課堂小結鞏固新知布置作業
教師活動:引導學生小結
學生活動:討論交流、自由發言
設計意圖:既引導學生從面積的角度理解勾股定理,又從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
通過布置課外作業,給學生留有繼續學習的空間和興趣,及時獲知學生對本節課知識的掌握情況,適當的調整教學進度和教學方法,并對學習有困難的學生給與指導。
八、板書設計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。
九、習題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。
(1)求梯子上端A到墻的底端B的距離AB。
(2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業設計
1、收集有關勾股定理的證明方法, 下節課展示、交流。
2、做一棵奇妙的勾股樹(選做)
初中數學教學設計 18
一、教學目標:
1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.
2.理解拋物線交x軸的點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.
3.能夠利用二次函數的圖象求一元二次方程的近似根。
二、教學重點
利用二次函數的圖象求一元二次方程的近似根。
教學難點:
理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系。
三、教學方法:
啟發引導合作交流
四:教具、學具:
課件
五、教學媒體:
計算機、實物投影。
六、教學過程:
[活動1]檢查預習引出課題
預習作業:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2.回顧一次函數與一元一次方程的關系,利用函數的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業的內容,指名回答,師生共同回顧舊知,教師做出適當總結和評價。
教師重點關注:學生回答問題結論準確性,能否把前后知識聯系起來,2題的格式要規范。
設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數式的變式,這三個方程把二次方程的根的三種情況體現出來,讓學生回顧二次方程的相關知識;2題是一次函數與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。
[活動2]創設情境探究新知
問題
1.課本p16問題.
2.結合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的高度是20m?
(結合預習題1,完成課本p16觀察中的題目。)
師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規范;問題2學生獨立思考指名回答,注重數形結合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結歸納出正確結論。
二次函數y=ax2+bx+c的圖象和x軸交點的坐標與一元二次方程ax2+bx+c=0的根有什么關系?
二次函數y=ax2+bx+c的
圖象和x軸交點
兩個交點
一個交點
沒有交點
教師重點關注:
1.學生能否把實際問題準確地轉化為數學問題;
2.學生在思考問題時能否注重數形結合思想的應用;
3.學生在探究問題的過程中,能否經歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
設計意圖:由現實中的實際問題入手給學生創設熟悉的問題情境,促使學生能積極地參與到數學活動中去,體會二次函數與實際問題的關系;學生通過小組合作分析、交流,探求二次函數與一元二次方程的關系,培養學生的合作精神,積累學習經驗。
[活動3]例題學習鞏固提高
問題:例利用函數圖象求方程x2-2x-2=0的實數根(精確到0.1).
師生行為:教師提出問題,引導學生根據預習題2獨立完成,師生互相訂正。
教師關注:
(1)學生在解題過程中格式是否規范;
(2)學生所畫圖象是否準確,估算方法是否得當。
設計意圖:通過預習題2的鋪墊,同學們已經從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習反饋鞏固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根兩個相異的實數根兩個相等的實數根沒有實數根根的判別式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0
問題:(1)p97.習題1、2(1)。
師生行為:教師提出問題,學生獨立思考后寫出答案,師生共同評價;問題(2)學生獨立思考后同桌交流,實物投影出學生解題過程,教師強調正確解題思路。
教師關注:學生能否準確應用本節課的知識解決問題;學生解題時候暴露的共性問題作針對性的點評,積累解題經驗。
設計意圖:這兩個題目就是對本節課知識的鞏固應用,讓新知識內化升華,培養數學思維的嚴謹性。
[活動5]自主小結,深化提高:
1.通過這節課的學習,你獲得了哪些數學知識和方法?
2.這節課你參與了哪些數學活動?談談你獲得知識的方法和經驗。
師生活動:學生思考后回答,教師對學生的錯誤予以糾正,不足的予以補充,精彩的適當表揚。
設計意圖:
1.題促使學生反思在知識和技能方面的收獲;
2.題讓學生反思自己的學習活動、認知過程,總結解決問題的策略,積累學習知識的方法,力求不同的學生有不同的發展。
[活動6]分層作業,發展個性:
1.(必做題)閱讀教材并完成p97習題21。2:3、4.
2.(備選題)p97習題21。2:5、6
設計意圖:分層作業,使不同層次的學生都能有所收獲。
七、教學反思:
1.注重知識的發生過程與思想方法的應用
《用函數的觀點看一元二次方程》內容比較多,而課時安排只一節,為了在一節課的時間里更有效地突出重點,突破難點,按照學生的認知規律遵循教師為主導、學生為主體的指導思想,本節課給學生布置的預習作業,從學生已有的經驗出發引發學生觀察、分析、類比、聯想、歸納、總結獲得新的知識,讓學生充分感受知識的產生和發展過程,使學生始終處于積極的思維狀態中,對新的知識的獲得覺得不意外,讓學生“跳一跳就可以摘到桃子”。
探究拋物線交x軸的點的個數與一元二次方程的根的個數之間的關系及其應用的過程中,引導學生觀察圖形,從圖象與x軸交點的個數與方程的根之間進行分析、猜想、歸納、總結,這是重要的數學中數形結合的思想方法,在整個教學過程中始終貫穿的是類比思想方
法。這些方法的使用對學生良好思維品質的形成有重要的作用,對學生的終身發展也有一定的`作用。
2.關注學生學習的過程
在教學過程中,教師作為引導者,為學生創設問題情境、提供問題串、給學生提供廣闊的思考空間、活動空間、為學生搭建自主學習的平臺;學生則在老師的指導下經歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養相伴而行,創造“海闊憑魚躍,天高任鳥飛”的課堂境界。
3.強化行為反思
“反思是數學的重要活動,是數學活動的核心和動力”,本節課在教學過程中始終融入反思的環節,用問題的設計,課堂小結,課后的數學日記等方式引發學生反思,使學生在掌握知識的同時,領悟解決問題的策略,積累學習方法。說到數學日記,“數學日記”就是學生以日記的形式,記述學生在數學學習和應用過程中的感受與體會。通過日記的方式,學生可以對他所學的數學內容進行總結,寫出自己的收獲與困惑。“數學日記”該如何寫,寫什么呢?開始摸索寫數學日記的時候,我根據課程標準的內容給學生提出寫數學日記的簡單模式:日記參考格式:課題;所涉及的重要數學概念或規律;理解得最好的地方;不明白的或還需要進一步理解的地方;所涉及的數學思想方法;所學內容能否應用在日常生活中,舉例說明。通過這兩年的摸索,我把數學日記大致分為:課堂日記、復習日記、錯題日記。
4.優化作業設計
作業的設計分必做題和選做題,必做題鞏固本課基礎知識,基本要求;選做題屬于拓廣探索題目,培養學生的創新能力和實踐能力。
初中數學教學設計 19
(一)創設情境導入新課
不利用工具,請你將一張用紙片做的角分成兩個相等的角。你有什么辦法?
如果前面活動中的紙片換成木板、鋼板等沒法折的角,又該怎么辦呢?
設計目的:能聚攏學生的思維為新課的開展創造了良好的教學氛圍。
(二)合作交流探究新知
(活動一)探究角平分儀的原理。具體過程如下:
播放美訪問我國的錄像資料------引出雨傘-----觀察它的截面圖,使學生認清其中的邊角關系-----引出角平分線;并且運用幾何畫板對傘的開合進行動態演示,讓學生直觀感受傘面形成的角與主桿的關系-----讓學生設計制作角平分儀;并利用以前所學的知識尋找理論上的依據,說明這個儀器的制作原理。
設計目的:用生活中的實例感知。以最近大事作引入點,以最常見的事物為載體,讓學生感受到生活中處處都有數學,認識到數學的價值。其中設計制作角平分儀,可培養學生的創造力和成就感以及學習數學的興趣。使學生很輕松的完成活動二。
(活動二)通過上述探究,能否總結出尺規作已知角的平分線的一般方法.自己動手做做看.然后與同伴交流操作心得.
分小組完成這項活動,教師可參與到學生活動中,及時發現問題,給予啟發和指導,使講評更具有針對性。
討論結果展示:教師根據學生的敘述,利用多媒體課件演示作已知角的平分線的方法:
已知:∠AO B.
求作:∠AOB的平分線.
作法:
(1)以O為圓心,適當長為半徑作弧,分別交OA、OB于M、N.
(2)分別以M、N為圓心,大于1/2MN的長為半徑作弧.兩弧在∠AOB內部交于點C.
(3)作射線OC,射線OC即為所求.
設計目的:使學生能更直觀地理解畫法,提高學習數學的興趣。
議一議:
1.在上面作法的第二步中,去掉“大于MN的長”這個條件行嗎?
2.第二步中所作的兩弧交點一定在∠AOB的`內部嗎?
設計這兩個問題的目的在于加深對角的平分線的作法的理解,培養數學嚴密性的良好學習習慣。
學生討論結果總結:
1.去掉“大于MN的長”這個條件,所作的兩弧可能沒有交點,所以就找不到角的平分線.
2.若分別以M、N為圓心,大于MN的長為半徑畫兩弧,兩弧的交點可能在∠AOB的內部,也可能在∠AOB的外部,而我們要找的是∠AOB內部的交點,否則兩弧交點與頂點連線得到的射線就不是∠AOB的平分線了.
3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個限制缺一不可.
4.這種作法的可行性可以通過全等三角形來證明.
(活動三)探究角平分線的性質
思考:已知一角及其角平分線添加輔助線構成全等三角形;構成全等的直角三角形。這樣的三角形有多少對?
這樣設計的目的是加深對全等的認識。
初中數學教學設計 20
一、教學目標:
(1)學生在教師引導下,積極主動地經歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數學結論的過程。
(2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩定性,能用三角形的全等解決一些實際問題。
(3)培養學生的空間觀念,推理能力,發展有條理地表達能力,積累數學活動經驗。
二、教學的重點與難點:
重點:三角形全等條件的探索過程是本節課的重點。
從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經歷了知識的形成過程,體會了一種分析問題的方法,積累了數學活動經驗,這將有利于學生更好的理解數學,應用數學。
難點:三角形全等條件的探索過程,特別是創設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。
根據初一學生年齡、生理及心理特征,還不具備獨立系統地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發揮教師的主導作用,適時點撥、引導,盡可能調動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發展。
三、教學過程
電腦顯示,帶領學生復習全等三角定義及其性質。電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊分別對應相等,三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等。但是,是否一定需要六個條件呢?條件能否盡可能少嗎?對學生分類中出現的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發展學生個性思維。
按照三角形“邊、角”元素進行分類,師生共同歸納得出:
1、一個條件:一角,一邊
2、兩個條件:兩角;兩邊;一角一邊
3、三個條件:三角;三邊;兩角一邊;兩邊一角
按以上分類順序動腦、動手操作,驗證。
教師收集學生的作品,加以比較,得出結論:
只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。
下面將研究三個條件下三角形全等的判定。
(1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比較是否全等。
學生得出結論后,再舉例體會一下。舉例說明:
如老師上課用的三角尺與同學用的三角板三個角分別對應相等,但一個大一個小,很顯然不全等;
再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。
(2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否全等。
板演:三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。
由上面的結論可知:只要三角形三邊的長度確定了,這個三角形的形狀和大小就確定了。
實物演示:
由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質叫三角形的穩定性。
舉例說明該性質在生活中的應用
類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩定性
圖形的穩定性與不穩定性在生活中都有其作用,讓學生舉例說明。
題組練習(略)
3、(對有能力的`學生要求把實際問題抽象成數學問題,根據自己的理解寫出推理過程。對一般學生要求口頭表達理由,并能說明每一步的根據。)
教師帶領,回顧反思本節課對知識的研究探索過程,小結方法及結論,提煉數學思想,掌握數學規律。
在教師引導下回憶前面知識,為探究新知識作好準備。議一議:
學生分小組進行討論交流。受教師啟發,從最少條件開始考慮,一個條件;兩個條件;三個條件?經過學生逐步分析,各種情況漸漸明朗,進行交流予以匯總,歸納。
想一想:
對只給一個條件畫三角形,畫出的三角形一定全等嗎?
畫一畫:
按照下面給出的兩個條件做出三角形:(1)三角形的兩個角分別是:30°,50°(2)三角形的兩條邊分別是:4cm,6cm(3)三角形的一個角為
30,一條邊為3cm
剪一剪:
把所畫的三角形分別剪下來。
比一比:
同一條件下作出的三角形與其他同學作的比一比,是否全等。學生重復上面的操作過程,畫一畫,剪一剪,比一比。學生總結出:三個內角對應相等的兩個三角形不一定全等學生舉例說明
學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結論。鼓勵學生自己舉出實例,體驗數學在生活中的應用。學生那出準備好的硬紙條,進行實驗,得出結論:四邊形、五邊形不具穩定性。
學生練習
學生在教師引導下回顧反思,歸納整理。
z+z平臺演示
z+z平臺演示,教師加以分析。學生分組討論,師生互動合作。
經過對各種情況得分析,歸納,總結,對學生滲透分類討論的數學思想。結論很顯然只需學生想像即可,z+z平臺輔助直觀演示。學生動手操作,通過實踐、自主探索、交流,獲得新知。
【初中數學教學設計】相關文章:
初中數學教學設計07-04
初中數學教學設計07-28
初中數學教學設計模板09-20
初中數學優秀教學設計04-09
人教版初中數學教學設計08-07
初中數學教學設計(15篇)12-16
初中數學教學設計 15篇05-17
初中數學教學設計精選15篇05-11
初中數學教學設計15篇11-08
初中數學教學設計(集合15篇)06-08