国产精品一久久香蕉产线看-国产精品一区在线播放-国产精品自线在线播放-国产毛片久久国产-一级视频在线-一级视频在线观看免费

公因數教學設計

時間:2024-07-20 12:00:56 設計 我要投稿

公因數教學設計

  作為一名教職工,常常要根據教學需要編寫教學設計,借助教學設計可使學生在單位時間內能夠學到更多的知識。一份好的教學設計是什么樣子的呢?以下是小編精心整理的公因數教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。

公因數教學設計

公因數教學設計1

  教學內容

  《最大公因數》是人教版第十冊第二單元第四節的內容,教材第80到81頁的內容及第82頁練習十五的第3題。

  設計思路

  這個內容被安排在人教版第十冊“分數的意義和性質”這個單元內,是學生已經理解和掌握因數的含義初步學會找一個數的因數,知道一個數因數的特點的基礎上進行教學的,這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和分數四則運算的基礎,對于學生的后續學習和發展,具有舉足輕重的用。

  教學目標

  1、使學生理解兩個數的公因數和最大公因數的意義。

  2、通過解決實際問題,初步了解兩個數的公因數和最大公因數在現實生活中的應用。

  3、培養學生獨立思考及合作交流的能力,能用不同方法找兩個數的最大公因數。

  4、培養學生抽象、概括的能力。

  重點難點

  1、理解公因數和最大公因數的意義。

  2、掌握求兩個數的最大公因數的方法。

  教具準備

  多媒體課件、卡片

  教學過程

  一、導入

  1、學校買回12棵風景樹,現在要栽種起來,栽種時行數不限,但每行栽種的數目相等,可以怎么栽種?16棵呢?

  2、分別寫出16和12的所有因數。

  二、教學實施

  1、老師用多媒體課件演示集合圖。

  指出 :1,2,4是16 和12公有的因數,叫做他們的公因數。

  其中,4是最大的公因數,叫做他們的最大公因數。

  2、完成教材第80頁的“做一做”

  先讓學生獨立思考,再讓拿卡片的同學快速站一站,那幾個數站在左邊,那幾個數站在右邊,那幾個數站在中間,最后集體訂正。

  3、出示例2。怎樣求18和27的最大公因數?

  (1) 學生先獨立思考,用自己想到的方法試著找出18和27的最大公因數。

  (2) 小組討論,互相啟發,再在全班交流。

  (3) 老師用多媒體課件和板書演示方法

  方法一 :先分別寫出18和27的因數,再圈出公有的因數,從中找到最大公因數。

  方法二 :先找出18的因數,再看18的因數中有哪些是27的因數,從中找最大。

  18的因數有:① ,2 ,③ ,6 ,⑨ ,18

  方法三 :先找出27的因數,再看27的因數中有哪些是18的因數,從中找最大。

  27的因數有:①,③,⑨,27

  方法四 :先寫出18的'因數1 ,2 ,3 ,6 ,9 ,18。然后從大到小依次看是不是27的因數 ,第一個數9是27的因數,所以9是18和27的最大公因數。

  4、完成教材第81頁的“做一做”。

  學生先獨立完成,獨立觀察,每組數有什么特點,再進行交流。

  小結:求兩個數最大公因數有哪些特殊情況?

  ⑴ 當兩個數成倍數關系時,較小的數就是他們的最大公因數。

  ⑵ 當兩個數只有公因數1時,他們的最大公因數是1.。

  三、課堂練習設計(多媒體課件出示)

  選出正確答案的編號填在括號里

  1、9和16的最大公因數是( )

  A . 1 B. 3 C . 4 D. 9

  2、16和48的最大公因數是()

  A . 4 B. 6 C . 8 D. 16

  3、甲數是乙數的倍數,甲乙兩數的最大公因數是( )

  A .1 B. 甲數C . 乙數D. 甲、乙兩數的積

  四、課堂小結

  通過本節課的學習,我們主要認識了公因數、最大公因數的意義;掌握了找兩個數的最大公因數的方法:找兩個數的最大公因數,可以先分別寫出這兩個數的因數,再圈出相同的因數,從中找出最大的公因數;也可以先找到一個數的因數,再從大到小看看那個數是另一個數的因數,從而找到最大公因數。

  五、留下疑問

  有三根小棒,分別長10㎝,16㎝,48㎝。要把他們都結成同樣長的小棒,步許剩余,每根小棒最長能有多少厘米?

  六、課堂作業設計

  教材82頁第2題、第5題

  板書設計

  最大公因數

  例2:怎樣求18和27的最大公因數?

  18的因數有:1 ,2 ,3 ,6 ,9 ,18

  27的因數有:1 ,3 , 9 ,27

  18和27的公因數有:1 ,3 , 9

  18和27的最大公因數是9

公因數教學設計2

  教學內容:教材第12頁

  教學目標:

  知識與技能:理解兩個數的公因數和最大公因數的意義。

  過程與方法:通過解決實際問題,初步了解兩個數的公因數和最大公因數在現實生活中的應用。

  教學重難點:理解公因數和最大公因數的意義。

  教學過程:

  一、預習礪能

  1、提問:什么是因數?怎樣找一個數的所有因素?

  2、寫出16和12的所有因數。

  提問:從16和12的所有因素中你發現了什么?

  二、導學礪能

  1.出示例1 。

  ( 1)引導學生審題,理解題意,一張長30cm、寬12cm的長方形紙,剪成大小相等的正方形且沒有剩余,這個正方形的邊長最大是多少厘米?

  ( 2)、以小組為單位,探究如何拼剪正方形。

  ( 3)、多媒體演示剪小正方形的過程,進一步驗證學生動手操作的`情況。

  ( 4)、通過交流,得出結論:要使所剪成大小相等的正方形且沒有剩余,正方形的邊長必須既是30的因數,又是12的因數。

  2、教學公因數和最大公因數。老師用多媒體課件演示集合圖。

  1,2,3,6是12和30公有的因數,叫做它們的公因數。其中,6是最大的一個公因數,叫做它們的最大公因數。

  3、引導學生用短除法找兩個數的最大公因數。

  三、鞏固礪能

  1、達標練習

  完成教材第12頁“試一試”。學生完成后歸納出規律。

  2、總結評價

  通過本節課的學習,我們主要認識了公因數、最大公因數的意義.公因數和最大公因數在現實生活中有著廣泛的應用,我們初步了解了它的應用價值。

公因數教學設計3

  教學內容:

  教科書第26-27頁的例3、例4和“練一練”,練習五的第1-5題。

  教學目標:

  1、使學生在具體的操作活動中,認識公因數和最大公因數,會在集合圖中分別表示兩個數的因數和它們的公因數。

  2、使學生學會用列舉的方法找到100以內兩個數的公因數和最大公因數,并能在解決問題的過程中進行有條理的思考。

  3、使學生在自主探索與合作交流的過程中,進一步發展與同伴進行合作交流的意識和能力,獲得成功的體驗。

  教學重點:認識公因數和最大公因數。

  教學難點:掌握在100以內找出兩個數的公因數和最大公因數的方法。

  教學準備:

  長18厘米、寬12厘米的長方形紙片,邊長6厘米、4厘米的正方形紙片。

  教學過程:

  一、經歷操作活動,認識公因數

  1、操作活動。

  ⑴先讓學生用邊長6厘米、4厘米的正方形紙片分別鋪長18厘米、寬12厘米的.長方形。

  再提問:哪種紙片能將長方形正好鋪滿?

  ⑵交流:還有哪些邊長是整厘米數的正方形紙片也能正好鋪滿這個長方形?

  ⑶1、2、3、6有什么共同的特征?

  ⑷4為什么不是12和18的公因數?

  揭示:1、2、3、6既是12的因數,又是18的因數,它們是12和18的公因數。

  二、自主探索,用列舉的方法求公因數和最大公因數

  1、自主探索。

  提問:8和12的公因數有哪些?最大的公因數是幾?你能試著找一找嗎?

  學生自主活動,在小組里交流。可能的方法有:

  ①先找出8的因數,再從8的因數中找出12的因數。

  ②先找出12的因數,再從12的因數中找出8的因數。

  2、明確8和12的公因數中最大的一個是4,指出:就是8和12的最大公因數。

  3、用集合圖表示。

  出示相交的集合圈,讓學生把8和12的因數分別填在集合圖中的合適部分,再看圖說說各自的想法。

  4、完成“練一練”

  重點讓學生操作與填空。

  三、鞏固練習,加深對公因數和最大公因數的認識

  1、練習五第1題。

  填好后讓學生看圖說說15和20的因數分別有哪些,公因數有哪些,最大公因數是幾?

  2、練習五第2題。

  3、練習五第3題。

  先讓學生獨立完成,再具體說說找兩個數的公因數和最大公因數的方法。

  4、練習五第4題。

  先出示第1組數,讓學生判斷,并說說是怎樣判斷的。然后完成先面幾組。

  5、練習五第5題。

  鼓勵學生用自己的方法找出每組數的最大公因數,并說說是怎樣做的,怎樣想的。

  四、全課小結

  提問:今天學習的是什么內容?什么是兩個數的公因數和最大公因數?怎樣找兩個數的最大公因數?

  引導:你還有什么疑問?

公因數教學設計4

  一.教學設計學科名稱:

  北師大版數學五年級上冊《找最大公因數》

  二.所在班級情況,學生特點分析:

  我校地處城郊,所帶班級學生共25人,學生的思維比較活躍,比較善于提出數學問題,能在小組合作學習中主動探究知識。本冊一單元,學生已經理解了因數和倍數的意義,能用乘法算式、集合等方式列舉出一個數的因數。因此用列舉法找最大公因數沒有困難。而利用因數關系、互質數關系找還有一定的難度。因為學生不易發現這兩個數具有這些關系。

  三.教學內容分析:

  教材直接呈現了找公因數的一般方法:先用想乘法算式的方式分別找出12和18 的因數,再找出公因數和最大公因數。在此基礎上,引出公因數與最大公因數的概念。教材用集合的方式呈現探索的過程。在練習1、2中引出了用因數關系、互質數關系找最大公因數,教師要引導學生發現這個方法并會運用。教師要注意讓學生經歷知識的形成過程,要重視引發學生的數學思考。

  四.教學目標:

  知識與技能:探索找兩個數的公因數的方法,會用列舉法找出兩個數的公因數和最大公因數。

  過程與方法:經歷找兩個數的公因數的過程,理解公因數和最大公因數的意義。

  情感、態度與價值:培養學生對學習數學的興趣。通過觀察、分析、歸納等數學活動,體驗數學問題的探索性和挑戰性,感受數學思考的條理性。

  五.教學難點分析:

  教學重點:探索找兩個數的公因數的方法,會用列舉法找出兩個數的公因數和最大公因數。

  教學難點:經歷找兩個數的公因數的過程,理解公因數和最大公因數的意義。

  六.教學課時:

  一課時

  七.教學過程:

  (一)復習

  師:出示3×4=12,( )是12的因數。

  生:3和4是12的因數。

  (二)探究新知

  1、認識公因數和最大公因數

  (1)師:除了3和4是12的因數,12的因數還有哪些?

  生獨立完成后匯報,板書 12的因數有:1、2、3、4、6、12。

  師:要找出一個數的全部因數,需要注意什么?

  生:要一對一對有序地寫,這樣才不會遺漏。

  師:照這樣的方法,請你寫出18的全部因數。

  生獨立寫后匯報:18的因數有:1、2、3、6、9、18

  (此時出示集合圖)

  師:在這兩個圈里,應該填上什么數?請大家完成正在書45頁上。

  生做后匯報師板書于圈中。

  (2)師:請大家找一找在12和18的因數中,有沒有相同的因數,相同的因數有哪幾個。

  生找出12和18相同的因數有:1、2、3、6

  師:像這樣,既是12的因數,又是18的因數,我們就說這些數都是12和18的公因數。

  師:這里最大的公因數是幾?

  生:最大是6。

  師:6就是12和18的最大公因數。這就是我們這節課學習的內容——找最大公因數。

  板書課題:找最大公因數

  (此時出示集合圖)

  師:中間這一區域有什么特征?應該填什么數字?獨立思考后小組討論

  (生分組討論)

  匯報:中間區域是12的因數和18的因數的交叉區域,所填的數應該既是12的因數又是18的因數,也就是12和18的公因數填在這里。

  師:請大家完成這個題。(生做后訂正)

  2、探索找最大公因數的方法

  (1)列舉法

  剛才我們找最大公因數的方法叫做列舉法。(板書:列舉法)

  請大家用這種方法找出下面每組數的`最大公因數。 9和15

  (2)利用因數關系找

  師:請大家翻到書第45頁,獨立完成第一題。

  生匯報:

  8的因數: 1、2、4、8

  16的因數: 1、2、4、8、16

  8和16的公因數: 1、2、4、8

  8和16的最大公因數是 8

  師引導學生觀察最后一句,想想8和16之間是什么關系,與他們的最大公因數有什么關系?

  生獨立思考后分組討論。

  生匯報:8是16的因數,所以8和16的最大公因數就是8。

  師引導生歸納并板書:如果較小數是較大數的因數,那么較小數就是這兩個數的最大公因數。(板書:用因數關系找)

  練習:找出下面每組數的最大公因數。 4和12 28和7 54和9

  (3)利用互質數關系找

  師:請大家獨立完成第二題。

  生匯報:

  5的因數: 1、5

  7的因數: 1、7

  5和7的最大公因數是 1

  師引導學生觀察最后一句5和7之間是什么關系,與他們的最大公因數有什么關系?

  生獨立思考后分組討論。

  生匯報:5和7都是質數,所以5和7的最大公因數就是1。

  師:像這樣只有公因數1的兩個數叫互質數。如果兩個數是互質數,那么它們的公因數只有1。(板書:用互質數關系找)

  練習:找出下面每組數的最大公因數。 4和5 11和7 8和9

  (4)整理找最大公因數的方法

  師:今天我們學習了用哪些方法找最大公因數?

  生:列舉法,用因數關系找,用互質數關系找。

  師:我們在做題時,要觀察給出的數字的特征選用不同的方法。

  (三)練習

  書46頁3、4、5題。生獨立完成,師巡視指導。

  (四)全課小結

  這節課你有什么收獲?

  八.課堂練習:

  在括號里填寫每組數的最大公因數

  6和18( ) 14和21( ) 15和25( )

  12和8( ) 16和24( ) 18和27( )

  9和10( ) 17和18( ) 24和25( )

  九.作業安排:

  完成練習冊上的習題

  十. 附錄(教學資料及資源):

  1、教師用書:北師大版五年級數學上冊

  2、數字卡片

  十一. 自我問答:

  短除法求最大公因數在書中暫時沒有出現,只在求最小公倍數后以“你知道嗎”的形式出現,但這種方法我覺得很實用,不知教材的意圖是什么?究竟怎樣處理?

  教學反思:

  本節課是在學生掌握了因數、倍數、找因數的基礎上進行教學,通過解決故事中的問題,讓學生逐層深入地懂得找公因數的基本方法。在此基礎上,引出公因數和最大公因數的概念,在填寫公因數時,學生往往容易出現重復的現象。

  在教學過程中,我鼓勵孩子歸納總結找最大公因數特征和方法。先看兩個數是不是倍數關系,如果是倍數關系,那么小的那個數就是最大公因數。如果兩個數是互質數或者是相鄰的兩個自然數,那么這兩個數的最大公因數就是1。

  找最大公因數時,我向學生介紹了短除法,當數字比較大時,用短除法比較簡單。

公因數教學設計5

  教學內容:現代小學數學第九冊第54~55頁。

  教學目標:

  知識目標:理解公因數、互素數的概念,會判斷兩個數是否互素。

  能力目標:教學中滲透集合思想,培養學生自主參與能力。

  教學準備:集合圈兩個,教學用題。

  教學過程:

  學習活動目標

  學習活動

  教師提供的幫助與指導

  活動設計意圖

  預案調整

  猜老師的小靈通號碼是:6的最大因數;最小素數的4倍;最小的素數;比10小的最大偶數;8的最大因數;最小的自然數;表示沒有的數;()

  一、組織教學:

  看誰猜得又對又快

  復習原來的知識,激發學習興趣。

  明確公因數的概念。

  1、口答:8的因數,12的因數。

  2、“搶因數”游戲。

  3、交流比賽心得。

  討論如何兩個人共贏。

  移動集合圈,把公有的因數填入重疊部分。

  6、學生練習。

  ①討論:求6和9的公因數有哪些方法?

  ②完成書上第55頁:寫出9和15的因數,再寫出公因數,并完成集合圈。

  ③填空:

  6的因數:

  18的因數:

  6和18的公因數:

  我的發現:

  完成第54頁集合圈。

  二、教學“公因數”的概念。

  板書8和12的所有因數:1,2,3,4,6,8,12。

  宣布游戲規則:把屬于你這個數的因數填入集合圈內,誰多為贏。

  小結:要想自己不輸,要先拿自己和對手都需要的卡片,像1,2,4,既是8的因數,又是12的因數,我們就說1,2,4是12的公因數。(板書:公因數)

  4、在激烈的競爭中,要想自己百戰百勝,就的知己知彼,戰勝對手并不是競爭中的最高境界,如果能兩個都贏,不是更好嗎?

  5、指導看集合圈,得出概念。

  板書:幾個數公有的因數叫做這幾個數的公因數;其中最大的一個叫做這幾個數的最大公因數。

  滲透集合的思想,進行思想教育。

  明確兩個數是倍數關系時的公因數就是較小數的因數。

  明確互質數的概念。

  1、完成書上第55頁表格,填完后說一說,這幾組數的公因數有什么特點?

  3、你覺得應該怎樣判斷兩個數是不是互素數?

  4、練習:第55頁練一練。

  5、游戲互動。

  找出與自己學號互質的數,組成互質數。看誰找得最多。

  三、教學“互質數”

  2、板書:公因數只有1的兩個數叫做互素數。

  6、隨機板書幾種一定互質的情況和可能互質的情況。

  找出一定能組成互質數的幾種情況。

  四、課堂小結

  今天這節課你有什么收獲?

  五、鞏固練習。

  1、按要求寫出互素數。

  ①兩個合數互素;

  ②一個素數和一個合數互素;

  ③兩個都是素數互素;

  2、明辨是非。

  ①2是互素數。

  ②互素數是沒有公因數的兩個數。

  ③有公因數1的兩個數一定是互素數。

  ④只要兩個數是偶數,那么這兩個數就不能成為互素數。

  ⑤成為互素數的兩個數,一定是素數。

  3、請你當參謀。

  老師有一間廚房要鋪地磚,長30分米,寬24分米,請同學們幫老師選一選,用多大的正方形地磚才能鋪得既整齊又節約呢?(地磚的邊長為整分米數)如果老師想鋪得快點,你認為哪種磚最合適?

  4、考考你:

  東方小學五(1)班有男同學27人,女同學18人,一起去劃船(每船不超過6人),要保證每條船上的男女同學都分別相等,請你算算應該租幾條船?每條船上最多坐幾人?

  鞏固本課所學內容,進一步明確概念。

  應用所學知識解決實際問題。

  板書設計:

  公因數互素數

  幾個數公有的因數叫做這幾個數的公因數。公因數只有1的兩個數叫做互素數。

  8和12的公因數一定能組成互素數:

  ①1和任何自然數

  ②兩個不同的素數

  ③相鄰的自然數

  ④相鄰的奇數

  ⑤素數和合數,但無倍數關系。

  8的因數12的因數

  教學反思:

  新課程標準明確提出:數學教學活動必須建立在學生的認識發展水平和已有的知識經驗基礎之上。本節課強調從學生已有的知識經驗出發,由老師的小靈通號碼為導入,使學生找到了新舊知識的聯系點,同時也激發了學生的學習興趣。

  學生學習數學既是一個生動活潑的、主動的和富有個性的過程,也是一個經驗共享、相互啟智的過程。本節課教師放手讓學生在自主探究的同時,為學生創設了多次合作、討論和交流的機會。在新授部分,我設計了一個“搶因數”的游戲,在游戲的過程中,讓學生反思:怎樣才能共贏?從而讓學生自己找到了“公因數”的概念。同時在這一過程中,滲透了集合圈的思想,使學生自己想到如何用集合圈的形式來表示兩個數的因數以及公因數。在整個這一環節的教學中,我并不是發號施令者,而是學生主動學習的引導者,組織者。當學生發現問題時,產生了探索的欲望時,我鼓勵他們積極地探索,這樣就充分地體現了學生探索的.主動性,等到解決了問題,學生的成功感也會特別大,這對于學生樹立信心,提高學習內驅力,很有必要。在學習互素數這一概念時,我是通過讓學生先填書上第55頁的表格,進而讓學生發現這幾組公因數的特點,從而自己得出了互素數的概念。接著讓學生利用自己的學號,在班內找出與自己學號可以組成互素數的學號,組成一組互素數。在交流的過程中,充分利用了學生所提供的課堂資源,讓學生自己找出了一定組成互素數的幾種情況及可能組成互素數的情況。在這一環節中,我始終尊重學生,引導學生大膽探索,學生的學習積極性不斷地提高,學生學得主動,生動,輕松。在鞏固練習階段,我設計了一組判斷題,讓學生在判斷反思的過程中,糾正了自己原有的錯誤認識,更加明確了概念。新授后,我設計了一道“請你當參謀”的應用題。老師有一間廚房要鋪地磚,長30分米,寬24分米,請同學們幫老師選一選,用多大的正方形地磚才能鋪得既整齊又節約呢?(地磚的邊長為整分米數)如果老師想鋪得快點,你認為哪種磚最合適?通過這一生活中現實場景的創設,營造出了學生爭先恐后,急需一吐為快的生動活潑的課堂氣氛。真正體現了數學來源于生活,又服務于生活這一理念。

  教后重建:

  用集合圈表示倍數關系的公因數和一般關系的公因數時,最好還可以把兩種集合圈對比一下,學生的概念還會更加清晰化。另外,在引入互素數這一概念時,可以設計若干組如互素關系、倍數關系、一般關系的數,讓學生自己去找一找各組數的公因數,再說說有什么發現。這樣既鞏固了公因數的概念,又可以充分利用課堂生成性資源,引出互素數概念,發現組成互素數的部分規律。這樣在鞏固練習中又引出了新內容,使整個環節比較緊湊,也比較自然。同時能充分發揮學生學習的積極主動性。

公因數教學設計6

  教學內容:

  青島版數學四年級下冊第七單元分數加減法信息窗一

  教學目標:

  1、在合作探究活動中了解公因數和最大公因數的意義,能用列舉法和短除法找出100以內兩個數的公因數和最大公因數。

  2、會在集合圖中表示兩個數的因數和它們的公因數,體會數形結合的數學思想。

  3、在探索公因數和最大公因數意義的過程中,經歷列舉、觀察、歸納等數學活動,進一步發展初步的推理能力。感受數學思考的條理性,體驗學習的樂趣。

  教學重點:

  理解公因數和最大公因數的意義,掌握求兩個數公因數和最大公因數的方法。

  教學難點:

  理解用短除法求最大公因數的算理。

  評價任務設計:

  1、教師對學生能夠利用列舉法、短除法找公因數和最大公因數學習情況的評價。

  2、教師對學生在學習活動中體會數形結合思想的評價。

  3、教師對學生參與學習活動的評價,及時評價不同水平的學生參與學習活動的實際表現。

  教學過程:

  一、復習導入

  師:昨天,老師布置了這樣一項課前作業。

  師:誰能拿著你的作業到前面來說一說你是怎樣分的?(指名答)

  師:這個同學把自己的想法表達的非常清楚,我們再來看看他是怎么分的。(課件演示)

  問:還有不同分法嗎?(生答師演示)

  預設:匯報出錯,比如4厘米——師引導觀察:如果用邊長4厘米的小正方形來分的話,長可以分幾個呢?這樣還能不能把長方形正好分完呢?

  師:其他同學還有不同意見嗎?

  同位互相看一看各自是怎樣分的,交流一下自己的想法!

  二、認識公因數和最大公因數

  1、教學公因數和最大公因數的意義,總結列舉法

  師:通過研究我們發現,小正方形的邊長可以是1厘米、2厘米、3厘米或者是6厘米,最多是幾厘米呢?

  師:這些小正方形的邊長1、2、3、6與長方形的長24和寬18之間有什么關系啊?

  生:1、2、3、6是18的因數也是24的'因數。

  師:我們把18和24的因數都找出來,對比著看一看吧!

  師:誰能快速找出18的因數?24的因數又有哪些呢?(指名說)

  師:對比觀察18和24的因數,你有什么發現?

  生:它們的因數中都有1、2、3、6、

  師:看來,這和我們剛才的想法是一樣的,1、2、3、6既是18的因數,也是24的因數,我們就把1、2、3、6叫做18和24的公因數。

  師:公因數中哪個最大啊?生:6最大

  師:我們就把6叫做18和24的最大公因數。

  師:其實在前面的課前作業中,小正方形的邊長就是長方形長與寬的公因數。今天這節課,我們就來研究公因數和最大公因數。

  師:剛才我們分別列舉出了18和24的因數,又找出它們的公因數和最大公因數,這種找公因數和最大公因數的方法叫列舉法。【板書:列舉法】

  2、教學集合圈

  師:為了讓大家更直觀的看出它們的關系,我們還可以用集合圈的形式表示出來。

  24的因數

  18的因數

  【課件出示】

  123612346

  91881224

  師:左邊的集合圈表示的是18的因數,右邊的集合圈表示的是24的因數、因為它們有公因數1、2、3、6,所以我們就把兩個集合圈合在一起。

  問1:現在你知道左邊這一部分表示的什么嗎?(指名答)

  右邊這一部分呢?大家一起說!兩個集合圈相交的部分呢?左半部分又表示什么呢?大家一起說右半部分表示的什么?

  師:下面請同位互相說一說集合圈中每一部分表示什么。

  師小結。

  師:現在給你一個集合圈你會填了嗎?

  師:看到這道題你能不能直接填呢?那應該先怎么辦?

  生:先找到16和28的因數和公因數,再填集合圈。

  師:請同學們先在作業紙上列舉出16和28的因數,再填集合圈。

  (生獨立完成,師巡視)

  展示與評價

  師:誰來說一說你是怎么填的?(指名匯報)

  給大家說說你先填的什么?又填的什么?

  指名說一說,及時評價。

  師:我們再來看看這位同學的作業。

  師:同位互相檢查一下,不對的改正過來。

  三、認識短除法

  1、講解短除法

  師:同學們,除了用列舉法找兩個數的公因數和最大公因數。還有一種方法也能找出兩個數的最大公因數,但是需要你用心觀察才能發現,你們愿意接受挑戰嗎?

  師:請大家先把18和24分解質因數。

  師:誰來說說你分解質因數的結果?

  師:請同學們仔細觀察這兩個式子,你有什么發現?

  生:我發現它們都有質因數2和3、

  師:18和24公有的質因數2和3與它們的最大公因數6之間有什么關系呢?生:2乘3等于6

  師:根據這個發現我們就可以把兩個短除式合并在一起,用短除法來求18和24的最大公因數。

  師邊板書邊講解……

  師:最后把所有的除數連乘起來,就能得到18和24的最大公因數了。

  問:現在誰能說說我們是怎樣用短除法求18和24的最大公因數呢?(指名學生說一說)

  2、練一練

  師:下面請你用這種方法求下面每組數的最大公因數,快速的完成在你的作業紙上!

  師:誰來說說你是怎么做的?(指名學生展示匯報)

  問:你認為他做的怎么樣?

  四、練習與應用

  1、練一練(蘇教版P27T1)

  師:接下來你能用今天所學的知識解決下面這個問題嗎?(課件出示)把它完成在你的作業紙上!

  展示匯報

  師:我們在找兩個數的公因數和最大公因數的時候,除了列舉法和短除法以外,我們還可以用這種方法(課件演示、介紹)

  2、扎花束

  師:同學們!春季運動會馬上就要到了,學校花束隊買來了兩種顏色的花準備來扎花束。(課件出示,師讀題目要求)

  問:同學們想一想這道題其實在求什么?

  師:選擇自己喜歡的方法把它完成在練習本上。

  問:大家一起告訴我最多能扎多少束?這樣每一束花里面有幾朵紅花?幾朵黃花呢?

  2、數學知識

  師:同學們!早在很久以前,我國古代的數學家就已經在研究我們今天所學的知識了!

  五、課堂總結:通過這節課的學習你有哪些收獲?

公因數教學設計7

  教學目標:

  1、結合解決問題理解公因數和最大公因數的意義,學會求兩個數的最大公因數的方法。

  2、⑴在探索公因數和最大公因數意義的過程中,經歷觀察、猜測、歸納等數學活動,進一步發展初步的推理能力。在解決問題的過程中,能進行有條理、有根據地進行思考。⑵學會用公因數、最大公因數的知識解決簡單的現實問題,體驗數學與生活的密切聯系。

  3、在學生探索新知的過程中,培養學生學好數學的信心以及小組成員之間互相合作的精神。

  教學重點:理解公因數與最大公因數的意義,用短除法求最大公因數的方法。

  教學難點:找公因數和最大公因數的方法。

  教學過程:

  一、情境導入

  師:我們鯨園小學的校本課程開展的豐富多彩,同學們都報了自己喜歡的課程去學習,這樣更有利于我們充分的展示自己的愛好特長。我們四五班就是每次校本課程的剪紙活動班,你喜歡剪紙嗎?瞧,這是老師搜集了一些同學們在活動中的好作品。(課件展示剪紙作品)

  師:現在我們來制作奧運福娃。第一步必須先裁好紙張。老師這里有一張長方形的紙長12厘米,寬18厘米。把這張紙剪成邊長是整厘米的正方形,猜猜看,要想剪完后沒有剩余,正方形的邊長可以是幾厘米呢?(學生猜)

  師:這只是我們的猜測,你要用具體的事實來說服大家。

  二、解決問題

  1、師:到底哪位同學的猜想是正確的呢?為了驗證一下,請每個組拿出準備好的學具,用小正方形紙片(要求學生剪成彩色的)在長方形的`紙上擺一擺,把擺的情況記錄下來,看有幾種不同的擺法。

  用手中的學具擺擺看。(學生分組進行拼擺并記錄,在小組內進行交流)。

  2、師:請每個組匯報一下你們擺的結果。

  小組匯報

  師:如何剪才能沒有剩余?

  師:那么這張紙能剪幾張?

  師:還有其他剪法嗎?(2、3、6讓學生充分進行交流)

  師:請大家認真觀察我們擺的結果,你有什么發現?這些1、2、3、6與12和18有什么關系?我們能不能從12和18的因數上來解釋上面的剪法呢?

  獨立觀察,總結規律,教師根據學生的發言進行小結。

  師:也就是說,要想正好擺滿,正方形紙片的邊長數應既是12的因數,也是18的因數。所以,1、2、3、6是12和18的公有的因數,我們可以把這4個數叫做12和18的公因數,公因數中最大的數是幾?

  師:我們把這個數稱為12和18的最大公因數

  師:為了更形象地表示出1、2、3、6與12和18的關系我們可以用集合圈的形式表示出來。出示相交的集合圈

  (用集合圈的形式分別板書12和18的因數,然后把兩個集合圈連起來,用交集的形式板書12和18的公因數。)

  師:中間部分1、2、3、6既是12的因數,也是18的因數。它們是12和18的公因數,其中6最大,是24和18的最大公因數。(出示課件)

  3、怎樣找12和18的公因數和最大公因數呢?請同學們根據已有的知識在小組內合作探索一下找公因數的方法

  學生探索并交流。

  4、練一練:用集合圈的形式求出16和28的公因數和最大公因數。

  5、師:求兩個數的公因數和最大公因數還可以用列舉法。(出示課件)

  6、師:求公因數和最大公因數除了用集合圈和列舉法之外,還有一個更簡便的方法(出示用短除法求12和18的公因數和最大公因數)

  師引出最大公因數是它們共有質因數的乘積。

  三、練習

  1、用短除法求36和42的最大公因數。

  2、生活中的數學:

  用這兩朵花搭配成同樣的花束(正好用完,沒有剩余),最多能扎成多少束?

  3、拓展練習:

  先分別找出下面各組數的最大公因數,再仔細觀察,你發現了什么?

  18和36 8和9

  6和12 17和15

  24和72 6和7

  8和16 16和21

  四、談談這節課你有什么收獲?

公因數教學設計8

  教學目標:

  1、讓學生在解決問題的過程中理解公因數和最大公因數的意義,探索找公因數的方法,會正確找出兩個數的公因數與最大公因數。

  2、滲透集合思想,體驗解決問題策略的多樣化。

  3、培養學生的抽象能力和解決問題能力。

  教學重點、難點:

  公因數與最大公因數的定義,探索找兩個數的最大公因數

  教學準備:

  多媒體課件。

  教學過程:

  一、預設情境,感受新知

  1、情境引入

  情境圖→文字→表格

  最近楊老師家買了新房子,其中有一個長16分米、寬12分米的貯藏室,她想用邊長是整分米數的正方形地磚把儲藏室的地面鋪滿,使用的地磚都是整塊。

  你知道凌老師對鋪地磚的要求是什么嗎?(交流 “正方形地磚” “都是整塊的” “邊長還要是整分米數” 什么是整分米數?)

  2、合作探究

  (1)討論

  用長方形方格紙代表長16分米、寬12分米的儲藏室地面,每個方格可以代表邊長是1分米的正方形。小組討論下,邊長可以是幾分米呢?(學生操作)

  (2)交流

  A、交流邊長是“4” 為什么?→你們覺得行嗎?→鋪滿

  B、交流邊長是“2” 出示一個角→你覺得長邊、短邊可以分別鋪幾塊呢?→鋪滿

  C、交流邊長是“1” 鋪一個角→你覺得長邊、短邊可以分別鋪幾塊?→鋪滿

  二、探究新知

  1、認識公因數和最大公因數

  (1)討論交流

  還有沒有別的鋪法?邊長是3分米的地磚行嗎?為什么?邊長是5分米呢?

  (寬邊雖然可以鋪整數塊,但長邊不行,會多出來。16÷5,12÷5都有余數,得到的不是整數,而題目要求是整塊的)

  (2)抽象公因數概念

  我們發現邊長1、2、4分米的地磚能鋪滿,而且是整數塊,其它的都不行。那“1、2、4”與16和12到底有著什么特殊關系呢?

  (1、2、4不僅是16的因數又是12的因數。1、2、4是12和16的公因數)

  同意嗎?(能聽懂他的意思嗎?說的是什么?)

  那我們就用以前的方法找找16、12的因數。

  16的因數有:1、2、4、8、16

  12的因數有:1、2、3、4、6、12

  你發現什么?

  (我發現1、2、4既是12的因數又是16的因數。)能不能簡單的說說,它們是12和6的什么數嗎?

  (1、2、4是12和16公有的因數,1、2、4是12和16的公因數) 板書“公因數”

  說能說一說什么是公因數

  幾個數共有的因數,就是這幾個數的公因數。

  那16和12的公因數有:1、2、4。

  (3)用集合圈表示

  我們可以用集合圈來表示兩個數的公因數

  (點擊課件出示兩獨立集合圈)

  這集合圈我們可以看成是16的因數,這一個集合圈我們可以看成是12的因數(課件動態顯示兩集合圈移動形成交集)

  現在中間的表示什么呢?應該填?(生說師點擊課件)

  那這圈里的(指左邊、右邊)填?表示?

  (4)認識最大公因數

  如果凌老師想用最少的塊數鋪好地面,可以選擇邊長是幾分米的地磚?

  你是怎么想的?

  (從公因數中找最大的。邊長大的話占地面積就要大,鋪的塊數就要少)

  實際上這4就是16和12的最大公因數,板書“最大公因數”

  16和12的最大公因數是4

  2、運用新知識,解決“老”問題

  如果現在讓我們考慮“可以選擇邊長是幾分米的地磚”,我們可以直接?(寫因數,找公因數)

  那如果解決“邊長最大是幾分米”呢?(最大公因數)

  三、合作交流、探索方法

  大家剛才幫助凌老師解決邊長可以幾分米時,先找兩個數的因數、然后圈出兩個數的公因數,再找最大的公因數,就是我們求最大公因數的一般方法。會求兩個數的最大公因數嗎?

  求最大公因數:18和27 15和10 兩生板書

  交流反饋。

  想想看,還有沒有更簡單的方法呢?

  如果我指找出一個數的因數,你能找出兩個數的最大公因數嗎?現在只找出18的.因數,你能找到18和27的最大公因數嗎?

  “先找小的數18的因數,再看哪些是27的因數”

  那如果只找了27的因數呢?

  “先找27的因數,再看哪些是18的因數”

  你能找出10和15的最大公因數嗎?

  這些方法實際都是屬于列舉法,在解決問題時你可以選擇自己喜歡的方法。

  四、鞏固練習、總結提升

  1、找出下列每組數的最大公因數

  4和8 6和18 1和7 8和9

  2、小游戲

  (1)找同桌學號的最大公因數

  你們是怎么找的?

  (2)凌老師上學的時候學號是36號,與我的同桌學號最大公因數是12。你知道我的同桌是幾號嗎?

  你是怎么想的?

  當時我們班級人數不到60人,我同桌的學號有6個因數。現在你知道他到底是幾號嗎?

公因數教學設計9

  第一課時

  一教學內容

  教材第79、80頁的內容及第82頁練習十五的第1題。

  二教學目標

  1.理解兩個數的公因數和最大公因數的意義。

  2.通過解決實際問題,初步了解兩個數的公因數和最大公因數在現實生活中的應用。

  3.培養學生抽象、概括的能力。

  三重點難點

  理解公因數和最大公因數的意義。

  四教具準備

  多媒體課件,方格紙(每人一張)。

  五教學過程

  (一)導入

  1.提問:什么是因數?

  2.寫出16和12的所有因數。

  提問:你是怎樣找一個數的因數的?

  (二)教學實施

  1.出示例1。

  (1)引導學生審題,理解題意,在儲藏室的長方形地面上鋪正方形地磚。要求既要鋪滿,又要都用整塊的方磚。

  (2)學生以小組為單位,探究如何拼擺。

  每組4人,在課前印好畫有長方形的方格紙上,每人選擇方磚的一種邊長,試一試,只要畫滿一條長邊,一條寬邊就可以。

  (3)多媒體演示拼擺過程,進一步驗證學生動手操作的情況。

  (4)通過交流,得出結論:要使所用的正方形地磚都是整塊的,地磚的邊長必須既是16的因數,又是12的因數。

  2.教學公因數和最大公因數。

  根據復習題中寫出的`16的因數、12的因數中找出公有因數,得出問題的答案,地磚的邊長可以是1cm、2Cm、4Cm,最大的是4cm。

  老師用多媒體課件演示集合圖。

  16的因數12的因數

  指出:1、2、4是16和12公有的因數,叫做它們的公因數。其中,4是最大的公因數,叫做它們的最大公因數。

  3.完成教材第80頁的“做一做”。

  讓學生獨立在教材下面寫一寫,再說一說哪幾個數寫在左邊,哪幾個數寫在右邊,哪幾個數寫在中間。

  4.完成教材第82頁練習十五的第1題。

  請學生填在教材上,說一說是怎樣找的。

  (四)思維訓練

  有三根小棒,分別長12厘米,18厘米,24厘米。要把它們都截成同樣長的小棒,不許剩余,每根小棒最長能有多少厘米?

  (五)課堂小結

  通過本節課的學習,我們主要認識了公因數、最大公因數的意義.公因數和最大公因數在現實生活中有著廣泛的應用,我們初步了解了它的應用價值。

  第二課時

  一教學內容

  最大公因數(二)

  教材第81頁的內容。

  二教學目標

  1.通過教學,使學生加深對公因數和最大公因數意義的理解,掌握找兩個數最大公因數的方法。

  2.培養學生獨立思考及合作交流的能力,能用不同方法找兩個數的最大公因數。

  三重點難點

  掌握找兩個數最大公因數的方法。

  四教具準備

  投影。

  五教學過程

  (一)導入

  提問:什么叫公因數?什么叫最大公因數?

  (二)教學實施

  1.出示例2。怎樣求18和27的最大公因數?

  (l)學生先獨立思考,用自己想到的方法試著找出18和27的最大公因數。

  (2)小組討論,互相啟發,再在全班交流。

  先分別寫出18和27的因數,再圈出公有的因數,從中找到最大公因數。

  方法二:先找出18的因數:①,2,③,6,⑨,18

  再看18的因數中有哪些是27的因數,再看哪個最大。

  方法三:先寫出27的因數,再看27的因數中哪些是18的因數。從中找出最大的。

  27的因數:①,③,⑨,27

  方法四:先寫出18的因數:1,2,3,6,9,18。從大到小依次看18的因數是不是27的因數,9是27的因數,所以9是18和27的最大公因數。

  2.引導學生看教材第81頁的“你知道嗎”,指導學生自學用分解質因數的方法,找兩個數的最大公因數。

  24和36的最大公因數=2×2×3=12。

  指出:兩個數所有公有質因數的積,就是這兩個數的最大公因數。

  3.完成教材第81頁的“做一做”。

  學生先獨立完成,獨立觀察,每組數有什么特點,再進行交流。小結:求兩個數的最大公因數有哪些特殊情況?

  (1)當兩個數成倍數關系時,較小的數就是它們的最大公因數。

  (2)當兩個數只有公因數1時,它們的最大公因數也是1。

  第三課時

  一教學內容

  最大公因數(二)

  教材第82、83頁練習十五的第2一9題。

  二教學目標

  1.培養學生獨立思考及合作交流的能力,能用不同方法找兩個數的最大公因數。

  2.培養學生抽象、概括的能力。

公因數教學設計10

  教學內容:

  人教版五年級第十冊66-69頁最大公因數。

  教學目標:

  1、理解公因數,最大公因數和互質數的概念。

  2、初步掌握求最大公因數的一般方法。

  3、培養學生思維的有序性和條理性。

  4、感受數學價值并體驗數學與生活實際的聯系,培養學生熱愛生活的情感。

  教學重,難點:

  1、理解公因數,最大公因數,互質數的概念。

  2、求最大公因數的一般方法。

  教具準備:

  多媒體教學課件。

  教學過程:

  一,師生共研,學習新知:

  我們已經會求一個數的因數,那么今天我們來看兩個數的因數又該怎樣來求呢?

  出示課件:

  16的因數有:1、2、4、8、16

  12的因數:1、2、3、4、6、12

  那么既是16又是12的因數是:1、2、4

  16和12的公有因數中最大的一個是:4

  出示課件:

  16的因數:1、2、4、8、16

  12的因數:1、2、3、4、6、12

  8的因數:1、2、4、8

  師:我們就把1、2、4叫做16、12和8的什么呢?

  生:公因數

  師:4就是16、12和8的什么呢?

  生:最大公因數。

  師:請同學用自己的話說一說公因數是什么意思?

  生:幾個數公有的因數,就叫公因數。

  生:就是幾個數都有的因數,就叫公因數。

  師:同學誰能說一下什么又是最大公因數呢?

  生:幾個數公因數里面最大的一個,就叫最大公因數。

  師生共同總結概念:

  公因數:幾個數公有的因數,叫做這幾個數的公因數。

  最大公因數:幾個數公因數里最大的一個,叫做這幾個數的最大公因數

  二、鞏固練習,加深理解:

  出示課件:

  同學們能不能找出15和18的公因數,再找出它們的最大公因呢?

  15的因數18的因數15的因數18的因數

  不清

  15和18的公因數

  三、合作探究,認識互質數

  1、5和7的公因數和最大公因數各是多少?

  5的因數:1、5.7的因數:1、7.

  5和7的公因數有:1.5和7的最大公因數是:1.

  2、7和9呢?

  7的因數:1,7.9的因數:1,3,9.

  7和9的公因數有:1.7和9的最大公因數是:1

  指名回答:并讓學生說出自己的看法和理由。

  師總結:公因數只有1的兩個數,叫做互質數。

  同學們認識了公因數和最大公因數?同學們想不想去求兩個數的最大公因數呢?

  四、深化練習、掌握方法:

  那么大家想一想18和30的最大公因數怎么去求呢?

  小組討論方法:小組代表發言匯報討論結果。

  師引導出用分解質因數的.方法,

  18=2×3×330=2×3×5

  歸納出:18和30的公有的質因數是2和3,

  那么最大公因數就是2×3=6

  能不能用更簡便的方法呢?

  把兩個短除法合并成一個短除法

  21830→用公有的質因數2除

  3915→用公有的質因數3除

  35→除到兩個商是互質數為止

  把所有的除數乘起來,得到18和30的最大公因數是

  2×3=6

  學生總結短除法求最大公因數的方法。

  求兩個數的最大公因數,一般先用這兩個數公有的質因數連續去除,一直除到所得的商是互質數為止,然后把所有的除數連乘起來.

  鼓勵學生用不同的方法去完成練習。

  求12和20的最大公因數

  學生動手練習,師巡視指導,學生上黑板演示過程。

  五、小小能手、我來闖關:

  第一關:填一填

  1.15的因數有(),20的因數有()它們的公因數有(),最大公因數是().

  2.8和9的公因數有(),最大公因數是()

  第二關:判一判

  1.公因數有1的兩個數是互質數().

  2.12的因數只有2、3、4、6、12。()

  3.成為互質數的兩個數一定都是質數.()

  第三關:做一做

  木材市場運來一批長12米,16米和20米的木材,把這三種長度的木材截成同樣長,最長可以截成每根是多少米?

  六、全課小節、暢談收獲:

  學生談本節課上的收獲。師總結本節課主要內容并指出我國古代的《九章算術》已經有求兩個數最大公因數的方法了對學生進行德育教育,激發學生的民族自豪感。

  七、板書設計:

  最大公因數

  公因數:幾個數公有的因數。

  最大公因數:公因數里最大的一個。

  互質數:公因數只有1的兩個數。

  把18和30分別分解質因數

  218230

  39315

  35

  18=2×3×3

  30=2×3×5

  18和30的公有質因數是2和3,因此:

  18和30的最大公因數是2×3=6

  合并兩個短除法

  21830→用公有的質因數2除

  3915→用公有的質因數3除

  35→除到兩個商是互質數為止

  把所有的除數乘起來,得出18和30的最大公因數是2×3=6

  教學反思

  教材對求最大公因數的編排,只是讓學生用邊長是整分米數的正方形地磚把貯藏室的地面鋪滿(使用的地磚都是整塊),可以選擇邊長是幾分米的地磚?邊長最大的是幾分米?由此引出最大公因數,教學中根據學生年齡特征,讓學生用不同的小正方形擺拼、觀察、思考,重視知識形成過程,同時,滲透由特殊到一般的不完全歸納法的數學思想。在擺拼過程中教師和學生一起操作,引發學生強烈的興奮感和新切感,拉近了師生間的距離,營造了和諧、活躍、向上的學習氛圍。

  1.借助操作活動,經歷概念的形成過程。

  本節課以直觀的操作活動,讓學生經歷公因數和最大公因數概念的形成過程。這樣安排有兩點好處:一是學生通過操作活動,能體會公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。學生通過操作,發現用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎上,引導學生思考1、2、4這些數和16、12有什么關系。這時揭示公因數和最大公因數的概念,突出概念的內涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合圖顯示公因數的意義。實實在在讓學生經歷了概念的形成過程,效果較好。

  2.預設探究過程,增強學生主體意識。

  為了解決問題,學生充分調動了已有知識經驗、方法、技能,找出了各種求“18和27的公因數和最大公因數”的方法。在這個過程中,由學生自己建構了公因數和最大公因數的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發掘了學生的自主意識,也充分體現了教師駕馭教材,調控學生的能力。

  3.提倡思考方法的多樣化。

  在教學中,我把重點放在找兩個數的公因數的方法上,鼓勵學生找最大公因數方法的多樣化。學生可能想到三種方法,通過討論,引導學生對方法進行優化,我認為用短除法求最大公因數是一個很有效、很簡便的方法,應該讓學生掌握。在這中間教師應注意引導、小結、鼓勵,重視方法和策略的滲透,以提高學生的學習能力

公因數教學設計11

  教學內容:

  第45—46頁。

  教學目標:

  1、經歷找兩個數的公因數的過程,理解公因數和最大公因數的意義。2、探索找兩個數的公因數的方法,學會正確找出兩個數的公因數和最大的公因數。

  3、使學生能探索出解決問題的有效方法。

  教學重、難點:

  探索找兩個數的公因數的方法。

  教具準備:

  實物投影儀等。

  教學過程:

  一、填一填。

  1、呈現找公因數的一般方法:

  (1)讓學生分別找出12和18的因數,并交流找因數的方法。

  (2)將這些因數填入兩個相交的集合。引導學生重點思考:兩個集合相交的部分填哪些因數?

  引出公因數和最大公因數的概念。

  (3)組織學生展開討論,再引導學生理解“兩個數公有的`因數是它們的公因數,其中最大的一個是它們的最大公因數”。

  (4)小結:找公因數的一般方法是先用想乘法算式的方式分別找出兩個數的因數,再找出公有的因數和最大公因數。

  2、引導學生討論其它的方法。

  二、練一練。

  1、第1、2題,通過這兩題的練習,使學生進一步明確找兩個數的公因數的一般方法,并對找有特征的數字的最大公因數的特殊方法有所體驗。

  2、第3題,學生獨立完成。

  3、第4題,讓學生找出這幾組數的公因數后,說一說有什么發現。這里第一行的兩個數的公因數只有1,第二行的兩個數具有倍數關系,對于這樣有特征的數字,

  4、讓學生用自己的語言來表述自己的發現。

  5、第5題,寫出下列各分數分子和分母的最大公因數。現自己寫一寫,然后說一說自己是怎樣找公因數的。

  三、數學探索。

  1、寫出1、2、3、4、5、……、20等各數和4的最大公因數。

  (1)先讓學生填表,找出這些數與4的最大公因數。

  (2)再根據表格完成折線統計圖。

  (3)組織學生觀察表格,討論“你發現了什么規律?”

  2、找一找1、2、3、4、5、……、20等各數和10的最大公因數,是否也有規律,與同學說一說你的發現。

  四、總結:

  誰能說一說找公因數的一般方法是什么?

  板書設計:

  找最大公因數

  12=()×()=()×()=()×()

  18=()×()=()×()=()×()

  12的因數:18的因數:

公因數教學設計12

  設計說明

  1.創設教學情境,揭示數學與現實生活的聯系。

  在教學中創設恰當的教學情境,可以起到激發學生學習熱情和學習興趣,提高課堂教學效率的作用。本設計注重聯系生活實際,把數學知識設置在具體生活情境之中,讓學生在具體情境中發現問題,引發學生的思考,從而明確公因數和最大公因數的概念,讓學生體會到數學與生活的密切聯系。

  2.讓學生自主探究,向學生滲透集合思想。

  掌握科學的數學思想方法對提升學生的思維能力和數學學科的后續學習都具有十分重要的意義。在學習公因數的過程中,把8和12的公因數用集合圖的形式表示出來,向學生滲透了集合思想,為學生以后的學習奠定基礎。

  課前準備

  教師準備 卡片 PPT課件

  教學過程

  ⊙復習導入

  1.復習。

  教師出示一組卡片,讓學生說一說卡片上各數的倍數有哪些。

  教師再出示一組卡片,讓學生說一說卡片上各數的因數有哪些。

  2.導入。

  師:我們學會了求一個數的因數,想不想學習怎樣求兩個數或三個數公有的因數呢?今天我們就通過游戲來學習公因數和最大公因數。

  ⊙創設情境,引出問題

  今天我們來玩一個找伙伴的游戲。(課件出示游戲規則:學號是12的因數的同學站到講臺左邊,學號是16的'因數的同學站到講臺右邊)同學們想好了嗎?1~16號同學現在開始找伙伴。

  學生開始找伙伴,站好后發現問題,有三個同學不知道該站在哪邊才好。

  師:你們3個為什么沒有找到伙伴?

  生1:我的學號是1,既是12的因數,又是16的因數,不知道該站在哪邊才好。

  生2:我的學號是2,既是12的因數,又是16的因數,不知道該站在哪邊才好。

  生3:我的學號是4,既是12的因數,又是16的因數,不知道該站在哪邊才好。

  師揭示概念:1,2,4是12和16公有的因數,叫做它們的公因數。其中,4是最大的公因數,叫做它們的最大公因數。

  學生自學教材60頁例1。

  設計意圖:游戲環節的設計在教學中能為學生營造一個輕松、愉悅的學習氛圍,學生們在這樣的氛圍中積極地參與數學活動,既體驗了成功的快樂,又提高了自己的判斷能力。

  ⊙求兩個數的最大公因數

  1.明確方法,提出要求。

  師:先找兩個數的因數,然后圈出兩個數的公因數,再找出最大公因數,這就是我們求最大公因數的一般方法。那么你會求下面兩個數的最大公因數嗎?

  課件出示教材60頁例2:怎樣求18和27的最大公因數?

  2.學生試做后,組內交流。

  3.討論:如果只找出一個數的因數,你能找出兩個數的最大公因數嗎?

  (先找較小的數18的因數,再看因數中哪些是27的因數,最后找出最大的一個)

  4.反饋練習。

  完成教材61頁1題。

  教師巡視,了解學生的做題情況。學生做完后,指名匯報,集體訂正。

  師:做完這道題,大家發現了什么?

  (學生討論后匯報)

  設計意圖:通過觀察、發現、設問引導學生探究求最大公因數的方法。通過交流思考、師生討論讓學生的推理能力得到充分發揮。

公因數教學設計13

  一、教材內容分析

  本課是九年義務教育新課程標準人教版五年級下冊79-80頁內容,本課內容是學生在學習了倍數和因數的基礎上,學習求公因數和最大公因數的方法,為進一步學習約分的知識做準備,通過本節課的學習要使學生掌握求兩個數的最大公因數方法,會求兩個數的最大公因數。

  二、教學目標

  1、知識與技能

  (1)、使學生能根據提供的情境探索并掌握用求兩個數的公因數和最大公因數的方法,會在集合圖中表示兩個數的因數和公因數。

  (2)、能看出一些特殊的兩個數的最大公因數。

  2、過程與方法

  (1)、激發學生自主學習、積極探索和合作交流的良好習慣。

  (2)、使學生從不同的角度找出兩個數的公因數和最大公因數的的區別和聯系,從而培養學生的分析、歸納等思維能力。

  (3)、使學生在自主探索與合作交流過程中,進一步發展與同伴進行合作交流的意識和能力,獲得成功的體驗。

  3、情感態度價值觀

  (1)、通過設置豐富的問題情境,鼓勵學生從多角度思考、探索、交流,激發學生的好奇心和主動學習的欲望。

  (2)、對數學中兩個數的最大公因數的相關知識感興趣。

  三、學習者特征分析

  1、本班學生是一棵樹完全小學五年級的學生;

  2、學生已經掌握了找一個數的因數和兩個數的公因數的方法;

  3、學生已具備了繼續學習求兩個數的最大公因數的鋪墊,對數學興趣比較高,上課發言積極,個別學生發現問題的能力比較強;

  4、學生運用數學知識解決實際問題的能力和數學建模的能力還不強。

  四、教學重難點

  重點:理解公因數和最大公因數的意義,掌握求兩個數最大公因數的方法。

  難點:理解并掌握求兩個數的最大公因數的方法。

  五、教學資源

  PPT課件、卡片

  六、教學過程

  一、預設情境,感受新知

  1、情境引入

  情境圖→文字→表格

  最近楊老師家買了新房子,其中有一個長16分米、寬12分米的.貯藏室,她想用邊長是整分米數的正方形地磚把儲藏室的地面鋪滿,使用的地磚都是整塊。

  你知道楊老師對鋪地磚的要求是什么嗎?(交流 “正方形地磚” “都是整塊的” “邊長還要是整分米數”什么是整分米數?)

  2、合作探究

  (1)討論

  用長方形方格紙代表長16分米、寬12分米的儲藏室地面,每個方格可以代表邊長是1分米的正方形。小組討論下,邊長可以是幾分米呢?(學生操作)

  (2)交流

  A、交流邊長是“4” 為什么?→你們覺得行嗎?→鋪滿

  B、交流邊長是“2” 出示一個角→你覺得長邊、短邊可以分別鋪幾塊呢?→鋪滿

  C、交流邊長是“1” 鋪一個角→你覺得長邊、短邊可以分別鋪幾塊?→鋪滿

  二、探究新知

  1、認識公因數和最大公因數

  (1)討論交流

  還有沒有別的鋪法?邊長是3分米的地磚行嗎?為什么?邊長是5分米呢? (寬邊雖然可以鋪整數塊,但長邊不行,會多出來。16÷5,12÷5都有余數,得到的不是整數,而題目要求是整塊的)

  (2)抽象公因數概念

  我們發現邊長4分米的地磚能鋪滿,而且是整數塊,其它的都不行。那“4”與16和12到底有著什么特殊關系呢? (4不僅是16的因數又是12的因數。4是12和16的公因數)同意嗎?(能聽懂他的意思嗎?說的是什么?)那我們就用以前的方法找找16、12的因數。16的因數有:1、2、4、8、16,12的因數有: 1、2、3、4、6、12你發現什么? (我發現1、2、4既是12的因數又是16的因數。)能不能簡單的說說,它們是12和6的什么數嗎? (1、2、4是12和16公有的因數,1、2、4是12和16的公因數)

  板書“公因數”說能說一說什么是公因數幾個數共有的因數,就是這幾個數的公因數那16和12的公因數有: 1、2、4

  (3)用集合圈表示我們可以用集合圈來表示兩個數的公因數(點擊課件出示兩獨立集合圈)

  這集合圈我們可以看成是16的因數,這一個集合圈我們可以看成是12的因數(課件動態顯示兩集合圈移動形成交集) 現在中間的表示什么呢?應該填?(生說師點擊課件)

  那這圈里的(指左邊、右邊)填?表示?

  (4)認識最大公因數

  如果楊老師想用最少的塊數鋪好地面,可以選擇邊長是幾分米的地磚?

  你是怎么想的? (從公因數中找最大的。邊長大的話占地面積就要大,鋪的塊數就要少)

  三、合作交流、探索方法

  大家剛才幫助楊老師解決邊長可以幾分米時,先找兩個數的因數、然后圈出兩個數的公因數,再找最大的公因數,就是我們求最大公因數的一般方法。會求兩個數的最大公因數嗎?求最大公因數:18和27 15和10兩生板書交流反饋。想想看,還有沒有更簡單的方法呢?如果我指找出一個數的因數,你能找出兩個數的最大公因數嗎?現在只找出18的因數,你能找到18和27的最大公因數嗎? “先找小的數18的因數,再看哪些是27的因數”

  那如果只找了27的因數呢? “先找27的因數,再看哪些是18的因數”你能找出10和15的最大公因數嗎?這些方法實際都是屬于列舉法,在解決問題時你可以選擇自己喜歡的方法。

  四、鞏固練習、總結提升

  1、找出每組數的最大公因數:4和8 6和18 1和7 8和9

  2、小游戲找同桌學號的最大公因數

  五、全課總結(收獲、自我評價)

  七、教學評價

  本科采用的學習評價有:

  1、個別評價:經過練習后學生自己對求兩個數的最大公因數的評價。

  2、教師評價:適時、準確地評價學生在學習過程的閃光點 。

  3、全體評價:學生自己總結本課堂學會了哪些方面的知識。

  八、教學反思

公因數教學設計14

  一、教學目標:

  1、理解兩個數的公因數和最大公因數的意義。

  2、通過解決實際問題,初步了解兩個數的公因數和最大公因數在現實生活中的應用。

  3、培養學生抽象、概括的能力。

  二、教學重難點:

  理解公因數和最大公因數的意義。

  三、教具準備:

  多媒體課件,方格紙(每人一張)。

  四、教學過程:

  (一)復習導入

  1.復習。

  教師出示一組卡片,讓學生說一說卡片上各數的倍數有哪些。

  教師再出示一組卡片,讓學生說一說卡片上各數的因數有哪些。

  2.導入。

  師:我們學會了求一個數的因數,想不想學習怎樣求兩個數或三個數公有的因數呢?今天我們就通過游戲來學習公因數和最大公因數。

  (二)創設情境,引出問題

  今天我們來玩一個找伙伴的游戲。(課件出示游戲規則:學號是12的因數的同學站到講臺左邊,學號是16的'因數的同學站到講臺右邊)同學們想好了嗎?1~16號同學現在開始找伙伴。

  學生開始找伙伴,站好后發現問題,有三個同學不知道該站在哪邊才好。

  師:你們3個為什么沒有找到伙伴?

  生1:我的學號是1,既是12的因數,又是16的因數,不知道該站在哪邊才好。

  生2:我的學號是2,既是12的因數,又是16的因數,不知道該站在哪邊才好。

  生3:我的學號是4,既是12的因數,又是16的因數,不知道該站在哪邊才好。

  師揭示概念:1,2,4是12和16公有的因數,叫做它們的公因數。其中,4是最大的公因數,叫做它們的最大公因數。

  設計意圖:游戲環節的設計在教學中能為學生營造一個輕松、愉悅的學習氛圍,學生們在這樣的氛圍中積極地參與數學活動,既體驗了成功的快樂,又提高了自己的判斷能力。

  (三)求兩個數的最大公因數

  1.明確方法,提出要求。

  師:先找兩個數的因數,然后圈出兩個數的公因數,再找出最大公因數,這就是我們求最大公因數的一般方法。那么你會求下面兩個數的最大公因數嗎?

  課件出示教材60頁例2:怎樣求18和27的最大公因數?

  2.學生試做后,組內交流。

  3.討論:如果只找出一個數的因數,你能找出兩個數的最大公因數嗎?

  (先找較小的數18的因數,再看因數中哪些是27的因數,最后找出最大的一個)

  4.反饋練習。

  教師巡視,了解學生的做題情況。學生做完后,指名匯報,集體訂正。

  師:做完這道題,大家發現了什么?

  (學生討論后匯報)

  (四)課堂小結通過本節課的學習,我們主要認識了公因數、最大公因數的意義。

  公因數和最大公因數在現實生活中有著廣泛的應用,我們初步了解了它的應用價值。

  (五)談談這節課你有什么收獲?

公因數教學設計15

  教學內容:

  完成練習五的第12~14題。

  教學要求:

  1、通過練習,使學生能進一步明確求兩個數的最小公倍數和最大公因數的方法。

  2、使學生能對所學的知識進行整理,并建立合理的認知結構。

  教學重點:

  鞏固求兩個數的最小公倍數和最大公因數的方法。

  教學難點:

  完善學生的認知結構。

  教學過程:

  一、完成第30頁的12~14題。教學過程:

  1、第12題

  先讓學生連一連,交流使說說公因數和公倍數的'含義。

  2、第13題

  先由學生獨立完成。

  然后說說分別是什么方法求出每組數的最大公因數的。

  什么情況下可以根據兩個數的特征直接寫出它們的最大公因數?

  3、第14題

  先由學生獨立完成。

  然后說說分別是什么方法求出每組數的最小公倍數的。

  什么情況下可以根據兩個數的特征直接寫出它們的最小公倍數?

  4、聯系第13題和第14題比較求兩個數的最小公倍數和最大公因數的方法有什么相同與不同?

  二、思考題

  幫助學生弄清兩點:

  ⑴水果實際上分掉45塊,巧克力實際分掉35塊。

  ⑵由于每種糖果都是平均分給這個小組的同學,因此小組的人數既是45的因數,又是35的因數。

  然后讓學生解答。

  三、“你知道嗎”

  讓學生讀一讀,并說一說從中了解到了哪些知識,自己對哪部分比較有興趣,還想進一步了解哪些知識?鼓勵學生用上述方法試著找兩個數的最小公倍數和最大公因數。

【公因數教學設計】相關文章:

最大公因數的教學設計09-21

《最大公因數》教學設計優秀12-12

人教版《最大公因數》教學設計(精選10篇)01-08

五年級數學公因數和最大公因數說課設計范文03-04

公倍數和公因數教材分析12-14

最大公因數評課稿04-05

最大公因數的評課稿06-20

最大公因數的評課稿(薦)08-18

最大公因數評課稿集錦08-26

主站蜘蛛池模板: 国产一区日韩二区欧美三区 | 波多野结衣中文字幕2022免费 | 天天夜夜狠狠一区二区三区 | 免费看黄色片的网站 | 欧美亚洲中日韩中文字幕在线 | 一区二区三区 日韩 | 18gay丫男同志69| 天堂网在线免费 | 色片免费网站 | 一区二区三区四区视频在线观看 | 中文字幕2019年中文字幕 | 1204手机在线观看免费高清 | 成人免费观看一区二区 | 婷婷精品视频 | 日韩aa| 欧美亚洲国产精品 | 午夜影院一区 | freexx性欧美黑人 | 精品国产日韩亚洲一区二区 | 久久精品a一国产成人免费网站 | 精品国产成人系列 | 亚洲无限码 | 亚洲综合色一区 | 成人1000部免费观看视频 | 免费一级毛片私人影院a行 免费一级毛片视频 | 久久久这里只有免费精品2018 | 玖玖精品 | 日韩在线你懂的 | 日韩亚洲一区中文字幕在线 | 天天插伊人 | 日韩一级特黄 | 又色又爽又黄的网站 | 制服丝袜在线播放 | 日批软件在线观看 | 欧美猛交xxxx免费看 | 亚洲综合激情在线影院 | 日韩国产欧美成人一区二区影院 | 免费网站国产 | 欧美一级高清视频在线播放 | 欧美a在线视频 | 男女性爽大片视频男女生活 |