- 《圓的面積》教學設計 推薦度:
- 相關推薦
人教版圓的面積教學設計優秀
作為一位優秀的人民教師,常常需要準備教學設計,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創造性的決策,以解決怎樣教的問題。那么寫教學設計需要注意哪些問題呢?以下是小編精心整理的人教版圓的面積教學設計優秀,歡迎閱讀,希望大家能夠喜歡。
人教版圓的面積教學設計優秀1
教學目標
1、通過操作、觀察,引導學生推導出圓面積的計算公式,并能解決一些簡單的實際問題。
2、培養學生觀察、分析、推理和概括的能力,發展學生的空間觀念,并滲透極限、轉化的數學思想。
3、在圓面積計算公式的推導過程中,運用轉化的思考方法,通過讓學生觀察“曲”與“直”的轉化,向學生滲透極限的思想,使學生受到辯證唯物主義觀點的啟蒙教育。
教學重點
圓面積的計算公式推導和運用。
課前準備
一個大圓、剪刀、小正方形。
課時安排:
1課時
授課時間
xx
教學過程
一、復習引入,導入新課。
教師引導交流:(出示一個圓)我們已經認識了圓,說說你對圓的了解。
學生說出自己的見解。
教師引導交流:如果圓的半徑用r表示,周長怎樣表示?周長的一半怎樣表示?
學生做出回答。
教師引導交流:圓的周長和直徑、半徑有關。大家猜想一下,圓的面積與誰有關?
二、探索嘗試,解釋交流。
教師引導交流:同學們的猜想對不對呢?下面我們就一起來驗證一下。
大家可利用昨晚把圓剪開后,拼成的圖形展示一下,看看發現了什么?
全班匯報交流:誰想先來展示一下?(學生回答)
教師引導交流:你能讓平行四邊形的底再直一點嗎?
學生領悟:分成4份其中的一份是扇形,拼成一個近似的平行四邊形。
學生領悟:多分幾份,平行四邊形的底就會直一些。
教師引導交流:對,如果把圓平均分成8份、16份、32份會怎么樣?
教師引導交流:請大家閉上眼睛想象一下,分成128份呢?如果把這個圓平均分的份數越來越多呢?
教師引導交流:對,把圓分的份數越多,拼成的就越近似于平行四邊形。
教師引導交流:若把其中的一個小扇形平均分成2份,取一份放在另一邊,平行四邊形就變成了什么圖形?
師:這樣就把求圓轉化成了求長方形。
教師引導交流:你認為轉化成的長方形與圓有什么關系?
生:他們的面積相等,長方形的長相當于圓周長的.一半,寬相當于半徑。
教師引導交流:你能根據它們的關系,推出圓的面積公式嗎?
長方形的面積=長×寬
圓的面積=c÷2×r=πr×r=πr2
教師引導交流:如果用s表示圓的面積,那么圓的面積公式可以寫成:s=πr2
教師引導交流:黑板上的這個圓半徑是10厘米,它的面積是多少。
三、鞏固練習
1、請同學們利用公式,求出“神舟五號”飛船預先設定的降落范圍是多大。
建議:可以先畫模擬圖,然后想辦法得出比預定范圍小了多少平方米。
2、自主練習第1題。
3、 自主練習第2題。
給出圓的直徑求圓的面積,必須先求出圓的半徑,再求圓的面積。
4、 自主練習第3題。
總結:通過這節課的學習,你有什么收獲?
人教版圓的面積教學設計優秀2
義務教育課程標準實驗教科書第十一冊P69~71例1、例2。
【教學目標】
1、認知目標
使學生理解圓面積的含義;掌握圓的面積公式,并能運用所學知識解決生活中的簡單問題。
2、過程與方法目標
經歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。
3、情感目標
引導學生進一步體會“轉化”的數學思想,初步了解極限思想;體驗發現新知識的快樂,增強學生的合作交流意識和能力,培養學生學習數學的興趣。
【教學重點】:掌握圓的面積的計算公式,能夠正確地計算圓的面積。
【教學難點】:理解圓的面積計算公式的推導。
【教學準備】:相應課件;圓的面積演示教具
【教學過程】
一、情境導入
出示場景——《馬兒的困惑》
師:同學們,你們知道馬兒吃草的大小是一個什么圖形呀?
生:是一個圓形。
師:那么,要想知道馬兒吃草的大小,就是求圓形的什么呢?
生:圓的面積。
師:今天我們就一起來學習圓的面積。(板書課題:圓的面積)
[設計意圖:通過“馬兒的困惑”這一場景,讓學生自己去發現問題,同時使學生感悟到今天要學習的內容與身邊的生活息息相關、無處不在,同時了解學習任務,激發學生學習的興趣。]
二、探究合作,推導圓面積公式
1、滲透“轉化”的數學思想和方法。
師:圓的面積怎樣計算呢?計算公式又是什么?你們想知道嗎?
我們先來回憶一下平行四邊形的面積是怎樣推導出來?
生:沿著平行四邊形的高切割成兩部分,把這兩部分拼成長方形師:哦,請看是這樣嗎?(教師演示)。
生:是的,平行四邊形的底等于長方形的長,平行四邊形的高等于長方形的寬,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高 。
師:同學們對原來的知識掌握得非常好。剛才我們是把一個圖形先切,然后拼,就轉化成別的圖形。這樣有什么好處呢?
生:這樣就把一個不懂的問題轉化成我們可以解決的問題。
師:對,這是我們在學習數學的過程當中的一種很好的方法。今天,我們就用這種方法把圓轉化成已學過的圖形。
師:那圓能轉化成我們學過的什么圖形?你們想知道嗎?(想)
2、演示揭疑。
師:(邊說明邊演示)把這個圓平均分成16份,沿著直徑來切,變成兩個半圓,拼成一個 近似的平行四邊形。
師:如果老師把這個圓平均分成32份,那又會拼成一個什么圖形?我們一起來看一看(師課件演示)。
師:大家想象一下,如果老師再繼續分下去,分的份數越多,每一份就會越小,拼成的圖形就會越接近于什么圖形?(長方形)
[設計意圖:通過這一環節,滲透一種重要的數學思想,那就是轉化的思想,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊知識解決新的問題。并借助電腦課件的演示,生動形象地展示了化曲為直的剪拼過程。]
3、學生合作探究,推導公式。
(1)討論探究,出示提示語。
師:下面請同學們看老師給的三個問題,請你們四人一組,拿出課前準備的學具拼一拼,觀察、討論完成這三個問題:
①轉化的過程中它們的(形狀)發生了變化,但是它們的(面積)不變?
②轉化后長方形的長相當于圓的(周長的一半),寬相當于圓的(半徑)?
③你能從計算長方形的面積推導出計算圓的面積的公式嗎?嘗試用“因為……所以……”類似的`關聯詞語。
師:你們明白要求了嗎?(明白)好,開始吧。
學生匯報結果,師隨機板書。
同學們經過觀察,討論,尋找出圓的面積計算公式,真了不起。
(2)師:如果圓的半徑用r表示,那么圓周長的一半用字母怎么表示?
(3)揭示字母公式。
師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2
(4)齊讀公式,強調r2=r×r(表示兩個r相乘)。
從公式上看,計算圓的面積必須知道什么條件?在計算過程中應先算什么?
[設計意圖:通過小組合作、討論使學生進一步明確拼成的長方形與圓之間的對應關系,有效地突破了本課的難點。]
三、運用公式,解決問題
1.教學例1。
師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)知道圓的半徑,讓學生根據圓的面積計算公式計算圓的面積。
預設:
教師應加強巡視,發現問題及時指導,并提醒學生注意公式、單位使用是否正確。
2.如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!
3.求下面各圓的面積。
[設計意圖:學生已經掌握了圓面積的計算公式,可大膽放手讓學生嘗試解答,從而促進了理論與實踐的結合,培養了學生靈活運用所學知識解決實際問題的能力。]
3.教學例2。
師:(出示例2)這是一張光盤,這張光盤由內、外兩個圓構成。光盤的銀色部分是一個圓環。請同學們小聲地讀一讀題。開始!
師:怎樣求這個圓環的面積呢?大家商量商量,想想辦法吧!
師:找到解決問題的方法了嗎?
師:好的,就按同學們想到的方法算一算這個圓環的面積吧!
教師繼續對學困生加強巡視,如果還有問題的學生并給予指導。
[設計意圖:學生已經掌握了圓面積的計算公式,掌握環形面積計算,教師可以引導學生分析理解,大膽放手讓學生嘗試解答,培養了學生運用所學知識解決實際問題的能力。]
四、課堂作業
1、教材P69頁“做一做”第2小題。
2、判斷題
讓學生先判斷,并講一講錯誤的原因。
3、填空題
復習圓的半徑、直徑、周長、面積之間的相互關系。
4、教材P70頁練習十六第2小題。
5、完成課件練習(知道圓的周長求面積)
老師強調學生認真審題,并引導學生要求圓的面積必須知道哪一個條件(半徑),知道圓的周長就如何求出圓的面積,老師注意輔導中下學生。
五、課堂總結
師:同學們,通過這節課的學習,你有什么收獲?
六、布置作業
人教版圓的面積教學設計優秀3
教學目標
(1)知識與技能目標:學生結合具體情境認識組和圖形的特征,掌握計算組合圖形的面積的方法,并能準確掌握和計算簡單組合圖形的面積。
(2)過程與方法目標:通過自主合作,培養學生獨立思考、合作探究的意識。
(3)情感態度與價值觀目標:學生在解決實際問題的過程中,進一步體驗圖形和生活的聯系,感受平面圖形的學習價值,提高學習好數學的自信心。
教學重難點
教學重點:組合圖形的認識及面積計算。
教學難點:對組合圖形的分析。
教學工具
多媒體課件,各種基本圖形紙片
教學過程
一、創設情境,談話引入
同學們,在中國古代的建筑中我們經常會見到“外放內圓”“外圓內方”的設計,下面請同學們欣賞幾組圖片。(生欣賞完后)師提問:這些圖片美嗎?(生:美)
師:這些圖片的設計中包含了我們學過的哪些平面圖形?(生:圓、正方形、長方形等)
師:這些不同的幾何圖形拼在一起能構成精美的圖案,給我們以美的享受,這說明我們的數學和現實生活聯系密切。今天,我們就來學習會有圓的組合圖形的面積。(板書課題)二、提出問題,自主探究
1、教師出示例3的兩幅圖并出示自學提示出示自學提示:
(1)上面兩幅圖有什么不同之處?
(2)右圖中的正方形的'對角線和圓得直徑有什么關系?
(3)上圖中兩個圓的半徑都是r,你能求出正方形和圓之間的半部分的面積嗎?
2、請同學們帶著問題認真閱讀P69-70頁的內容,獨立思考自學提示中的問題,若有困難可以小組內討論。(自學時間:4分鐘)三、師生聯動,合作探究1、匯報交流,師生互動
生匯報問題(1):這兩幅圖都是由圓和正方形組成,左圖是外圓內方,右圖是外方內圓。
生匯報問題(2):右圖中的正方形的對角線和圓得直徑相等。
生匯報問題(3):左圖陰影面積=正方形的面積-圓的面積列式為:S正=2×2=4(m2 ) S圓=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左圖:圓的面積減去正方形的面積( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )
師:同學們做的很好!可我又有問題了,若兩個圓的半徑都是r,那結果又是如何呢?生派代表回答:
左圖;(2r)-3.14r =0.86r
右圖:3.14r-( 1/2 ×2r×r)×2=1.14r當r=1m時,和前面的結果完全一致
答:左圖中正方形和圓之間的面積是0、86m、右圖中圓與正方形之間的面積是1.14m。
四、總結引導,知識生成這節課你有什么收獲?
師順便對生進行德育教育:在我們今后的人生道路中,我們為人處事,必須能屈能伸,可方可圓,外在大度圓融,內在正直公正。五、科學訓練,提高能力1、出示教材P70做一做2、完成教材P72第9題六、堂清作業
七、作業布置P73第10、11、
課后小結
這節課你有什么收獲?
課后習題
1、出示教材P70做一做
2、完成教材P72第9題
板書
含有圓的組合圖形的面積
左圖:S正=2×2=4(m2 )右圖:( 1/2 ×2×1)×2=2(m2 )
S圓=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )
4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )
【圓的面積教學設計優秀】相關文章:
【優秀】《圓的面積》教學設計08-13
《圓的面積》教學設計02-07
[精選]《圓的面積》教學設計01-28
《圓的面積》教學設計06-19
圓的面積教學設計08-15
《圓的面積》經典教學設計01-21
圓的面積教學設計14篇02-27
圓的面積教學設計13篇03-03
圓的面積教學設計(14篇)03-03