- 相關推薦
張齊華的《交換律》教學實錄
交換律是被普遍使用的一個數(shù)學名詞,意指能改變某物的順序而不改變其最終結果。 下面是小編為你帶來的張齊華的《交換律》教學實錄 ,歡迎閱讀。
師:喜歡聽故事嗎?
生:喜歡。
師:那就給大家講一個“朝三暮四”的故事吧。(故事略)聽完故事,想說些什么嗎?
結合學生發(fā)言,教師板書:3+4=4+3。
師:觀察這一等式,你有什么發(fā)現(xiàn)?
生1:我發(fā)現(xiàn),交換兩個加數(shù)的位置和不變。
(教師板書這句話)
師:其他同學呢?(見沒有補充)老師的發(fā)現(xiàn)和他很相似,但略有不同。(教師隨即出示:交換3和4的位置和不變)比較我們倆給出的結論,你想說些什么?
生2:我覺得您(老師)給出的結論只代表了一個特例,但他(生1)給出的結論能代表許多情況。
生3:我也同意他(生2)的觀點,但我覺得單就黑板上的這一個式子,就得出“交換兩個加數(shù)的位置和不變”好像不太好。萬一其它兩個數(shù)相加的時候,交換它們的位置和不等呢!我還是覺得您的觀點更準確、更科學一些。
師:的確,僅憑一個特例就得出“交換兩個加數(shù)的位置和不變”這樣的結論,似乎草率了點。但我們不妨把這一結論當作一個猜想(教師隨即將生1給出的結論中的“。”改為“?”)。既然是猜想,那么我們還得——
生:驗證。
驗證猜想,需要怎樣的例子?
師:怎么驗證呢?
生1:我覺得可以再舉一些這樣的例子?
師:怎樣的例子,能否具體說說?
生1:比如再列一些加法算式,然后交換加數(shù)的位置,看看和是不是跟原來一樣。(學生普遍認可這一想法)
師:那你們覺得需要舉多少個這樣的例子呢?
生2:五、六個吧。
生3:至少要十個以上。
生4:我覺得應該舉無數(shù)個例子才行。不然,你永遠沒有說服力。萬一你沒有舉到的例子中,正好有一個加法算式,交換他們的位置和變了呢?(有人點頭贊同)
生5:我反對!舉無數(shù)個例子是不可能的,那得舉到什么時候才好?如果每次驗證都需要這樣的話,那我們永遠都別想得到結論!
師:我個人贊同你(生5)的觀點,但覺得他(生4)的想法也有一定道理。綜合兩人的觀點,我覺得是不是可以這樣,我們每人都來舉三、四個例子,全班合起來那就多了。同時大家也留心一下,看能不能找到“交換加數(shù)位置和發(fā)生變化”的情況,如果有及時告訴大家行嗎?
學生一致贊同,隨后在作業(yè)紙上嘗試舉例。
師:正式交流前,老師想給大家展示同學們在剛才舉例過程中出現(xiàn)的兩種不同的情況。
(教師展示如下兩種情況:1.先寫出12+23和23+12,計算后,再在兩個算式之間添上“=”。2.不計算,直接從左往右依次寫下“12+23=23+12”。)
師:比較兩種舉例的情況,想說些什么?
生6:我覺得第二種情況根本不能算舉例。他連算都沒算,就直接將等號寫上去了。這叫不負責任。(生笑)
生7:我覺得舉例的目的就是為了看看交換兩個加數(shù)的位置和到底等不等,但這位同學只是照樣子寫了一個等式而已,至于兩邊是不是相等,他想都沒想。這樣舉例是不對的,不能驗證我們的猜想。
(大家對生6、生7的發(fā)言表示贊同。)
師:哪些同學是這樣舉例的,能舉手示意一下嗎?
(幾位同學不好意思地舉起了手。)
師:明白問題出在哪兒了嗎?(生點頭)為了驗證猜想,舉例可不能亂舉。這樣,再給你們幾位一次補救的機會,迅速看看你們寫出的算式,左右兩邊是不是真的相等。
師:其余同學,你們舉了哪些例子,又有怎樣的發(fā)現(xiàn)?
生8:我舉了三個例子,7+8=8+7,2+9=9+2,4+7=7+4。從這些例子來看,交換兩個加數(shù)的位置和不變。
生9:我也舉了三個例子,5+4=4+5,30+15=15+30,200+500=500+200。我也覺得,交換兩個加數(shù)的位置和不變。
(注:事實上,選生8、生9進行交流,是教師有意而為之。)
師:兩位同學舉的例子略有不同,一個全是一位數(shù)加一位數(shù),另一個則有一位數(shù)加一位數(shù)、二位數(shù)加兩位數(shù)、三位數(shù)加三位數(shù)。比較而言,你更欣賞誰?
生10:我更欣賞第一位同學,他舉的例子很簡單,一看就明白。
生11:我不同意。如果舉得例子都是一位數(shù)加一位數(shù),那么我們最多只能說,交換兩個一位數(shù)的位置和不變。至于加數(shù)是兩位數(shù)、三位數(shù)、四位數(shù)等等,就不知道了。我更喜歡第二位同學的。
生12:我也更喜歡第二位同學的,她舉的例子更全面。我覺得,舉例就應該這樣,要考慮到方方面面。
(多數(shù)學生表示贊同。)
師:如果這樣的話,那你們覺得下面這位同學的舉例,又給了你哪些新的啟迪?
教師出示作業(yè)紙:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。
生:我們在舉例時,都沒考慮到0的問題,但他考慮到了。
生:他還舉到了分數(shù)的例子,讓我明白了,不但交換兩個整數(shù)的位置和不變,交換兩個分數(shù)的位置和也不變。
師:沒錯,因為我們不只是要說明“交換兩個整數(shù)的位置和不變”,而是要說明,交換——
生:任意兩個加數(shù)的位置和不變。
師:看來,舉例驗證猜想,還有不少的學問。現(xiàn)在,有了這么多例子,能得出“交換兩個加數(shù)的位置和不變”這個結論了嗎?(學生均表示認同)有沒有誰舉例時發(fā)現(xiàn)了反面的例子,也就是交換兩個加數(shù)位置和變了?(學生搖頭)這樣看來,我們能驗證剛才的猜想嗎?
生:能。
(教師重新將“?”改成“。”,并補充成為:“在加法中,交換兩個加數(shù)的位置和不變。”)
師:回顧剛才的學習,除了得到這一結論外,你還有什么其它收獲?
生:我發(fā)現(xiàn),只舉一、兩個例子,是沒法驗證某個猜想的,應該多舉一些例子才行。
生:舉的例子盡可能不要雷同,最好能把各種情況都舉到。
師:從“朝三暮四”的寓言中,我們得出“3+4=4+3”,進而形成猜想。隨后,又通過舉例,驗證了猜想,得到了這一規(guī)律。該給這一規(guī)律起什么名稱呢?
(學生交流后,教師揭示“加法交換律”,并板書。)
師:在這一規(guī)律中,變化的是兩個加數(shù)的――(板書:變)
生:位置。
師:但不變的是――
生:它們的和。(板書:不變)
師:原來,“變”和“不變”有時也能這樣巧妙地結合在一起。
結論,是終點還是新的起點?
師:從個別特例中形成猜想,并舉例驗證,是一種獲取結論的方法。但有時,從已有的結論中通過適當變換、聯(lián)想,同樣可以形成新的猜想,進而形成新的結論。比如(教師指讀剛才的結論,加法的“加”字予以重音),“在加法中,交換兩個加數(shù)的位置和不變。”那么,在——
生1:(似有所悟)減法中,交換兩個數(shù)的位置,差會不會也不變呢?
(學生中隨即有人作出回應,“不可能,差肯定會變。”)
師:不急于發(fā)表意見。這是他(生1)通過聯(lián)想給出的猜想。
(教師隨即板書:“猜想一:減法中,交換兩個數(shù)的位置差不變?”)
生2:同樣,乘法中,交換兩個乘數(shù)的位置積會不會也不變?
(教師板書:“猜想二:乘法中,交換兩個數(shù)的位置積不變?”)
生3:除法中,交換兩個數(shù)的位置商會不變嗎?
(教師板書:“猜想三:除法中,交換兩個數(shù)的位置商不變?”)
師:通過聯(lián)想,同學們由“加法”拓展到了減法、乘法和除法,這是一種很有價值的思考。除此以外,還能通過其它變換,形成不一樣的新猜想嗎?
生4:我在想,如果把加法交換律中“兩個加數(shù)”換成“三個加數(shù)”、“四個加數(shù)”或更多個加數(shù),不知道和還會不會不變?
師:這是一個與眾不同的、全新的猜想!如果猜想成立,它將大大豐富我們對“加法交換律”的認識。(教師板書“猜想四:在加法中,交換幾個加數(shù)的位置和不變?”)現(xiàn)在,同學們又有了不少新的猜想。這些猜想對嗎?又該如何去驗證呢?選擇你最感興趣的一個,用合適的方法試著進行驗證。
(學生選擇猜想,舉例驗證。教師參與,適當時給予必要的指導。然后全班交流。)師:哪些同學選擇了“猜想一”,又是怎樣驗證的?
生5:我舉了兩個例子,結果發(fā)現(xiàn)8-6=2,但6-8卻不夠減;3/5-1/5=2/5,但1/5-3/5卻不夠減。所以我認為,減法中交換兩個數(shù)的位置差會變的,也就是減法中沒有交換律。
師:根據(jù)他舉的例子,你們覺得他得出的結論有道理嗎?
生:有。
師:但老師舉的例子中,交換兩數(shù)位置,差明明沒變嘛。你看,3-3=0,交換兩數(shù)的位置后,3-3還是得0;還有,14-14=14-14,100-100=100-100,這樣的例子多著呢。
生6:我反對,老師您舉的例子都很特殊,如果被減數(shù)和減數(shù)不一樣,那就不行了。
生7:我還有補充,我只舉了一個例子,2-1≠1-2,我就沒有繼續(xù)往下再舉例。 師:哪又是為什么呢?
生7:因為我覺得,只要有一個例子不符合猜想,那猜想肯就錯了。
師:同學們怎么理解他的觀點。
生8:(略。)
生9:我突然發(fā)現(xiàn),要想說明某個猜想是對的,我們必須舉好多例子來證明,但要想說明某個猜想是錯的,只要舉出一個不符合的例子就可以了。
師:瞧,多深刻的認識!事實上,你們剛才所提到的符合猜想的例子,數(shù)學上我們就稱作“正例”,至于不符合猜想的例子,數(shù)學上我們就稱作――
生:反例。
(有略。)
師:關于其它幾個猜想,你們又有怎樣的發(fā)現(xiàn)?
生10:我研究的是乘法。通過舉例,我發(fā)現(xiàn)乘法中交換兩數(shù)的位置積也不變。
師:能給大家說說你舉的例子嗎?
生10:5×4=4×5,0×100=100×0,18×12=12×18。
(另有數(shù)名同學交流自己舉的例子,都局限在整數(shù)范圍內(nèi)。)
師:那你們都得出了怎樣的結論?
生11:在乘法中,交換兩數(shù)的位置積不變。
生12:我想補充。應該是,在整數(shù)乘法中,交換兩數(shù)的位置積不變,這樣說更保險一些。
師:你的思考很嚴密。在目前的學習范圍內(nèi),我們暫且先得出這樣的結論吧,等學完分數(shù)乘法、小數(shù)乘法后,再補充舉些例子試試,到時候,我們再來完善這一結論,你們看行嗎?
(對猜想三、四的討論略。)
隨后,教師引導學生選擇完成教材中的部分習題(略),從正、反兩面鞏固對加法、乘法交換律的理解,并借助實際問題,溝通“交換律”與以往算法多樣化之間的聯(lián)系。
怎樣的收獲更有價值?
師:通過今天的學習,你有哪些收獲?
生:我明白了,加法和乘法中有交換律,但卻沒有減法交換律或除法交換律。
生:我發(fā)現(xiàn),有了猜想,還需要舉許多例子來驗證,這樣得出的結論才準確。
生:我還發(fā)現(xiàn),只要能舉出一個反例,那我們就能肯定猜想是錯誤的。
生:舉例驗證時,例子應盡可能多,而且,應盡可能舉一些特殊的例子,這樣,得出的結論才更可靠。
師:只有一個例子,行嗎?
生:不行,萬一遇到特殊情況就不好了。
(作為補充,教師給學生介紹了如下故事:三位學者由倫敦去蘇格蘭參加會議,越過邊境不久,發(fā)現(xiàn)了一只黑羊。“真有意思,”天文學家說:“蘇格蘭的羊都是黑的。”“不對吧。”物理學家說,“我們只能得出這樣的結論:在蘇格蘭有一些羊是黑色的。”數(shù)學家馬上接著說:“我覺得下面的結論可能更準確,那就是:在蘇格蘭,至少有一個地方,有至少一只羊,它是黑色的。”)
必要的拓展:讓結論增殖!
師:在本課即將結束的時候,依然有一些問題需要留給大家進一步展開思考。
(教師出示如下算式:20-8-6○20-6-8 ; 60÷2÷3○60÷3÷2)
師:觀察這兩組算式,你發(fā)現(xiàn)什么變化了嗎?
生:我發(fā)現(xiàn),第一組算式中,兩個減數(shù)交換了位置,第二組算式中,兩個除數(shù)也交換了位置。
師:交換兩個減數(shù)或除數(shù),結果又會怎樣?由此,你是否又可以形成新的猜想?利用本課所掌握的方法,你能通過進一步的舉例驗證猜想并得出結論嗎?這些結論和我們今天得出的結論有沖突嗎,又該如何去認識?
【張齊華的《交換律》教學實錄】相關文章:
張齊華《加法交換律》課堂實錄03-24
張齊華課堂實錄07-02
張齊華平均數(shù)課堂實錄07-02
華應龍的課堂實錄07-02
華應龍《圓的認識》課堂實錄07-02
鄭桂華《安塞腰鼓》課堂實錄07-02
白鵝教學實錄教學實錄案例反思07-03
一張照片課堂實錄07-02
張潔《我的四季》課堂實錄07-02
張志和漁歌子課堂實錄07-02