倍數與因數教學設計
作為一名教師,就不得不需要編寫教學設計,借助教學設計可以更好地組織教學活動。那么你有了解過教學設計嗎?以下是小編幫大家整理的倍數與因數教學設計,歡迎大家分享。
倍數與因數教學設計1
一、教學過程:
(一)動手操作,感受并認識因數與倍數。
1、老師和同學們都在課前準備了幾個小正方形,如果用這些小正方形拼成一個長方形,可以怎么拼?(讓學生獨立拼擺)
2、全班交流,請學生上黑板拼一拼,拼法用乘法算式表示出來。
指出:有三種拼法,列出三個不同的乘法算式,今天我們研究的內容就藏在著三個算式中。
3、教師選擇一個算式指出4×3=12,4是12的因數,12是4的倍數,看這個算式還可以說:誰是誰的因數?誰是誰的倍數嗎?
4、揭示課題:倍數和因數。
5、看其他兩個算式,你還能說什么嗎?你覺得哪個算式給你的感覺有些特別?
6、自己寫一個乘法算式,讓你的同桌說一說誰是誰的因數,誰是誰的倍數,選一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能說16是倍數,2是因數。
7、完成想想做做(1)。
8、完成想想做做(2)。(交流:應付元數與4元有什么關系?省略號表示什么意思?從這個省略好你知道了什么?)
9、想想做做(3)。(從中發現了什么?24有那些因數?最大的是幾?最小的是幾?)
(二)找倍數和因數。
1、找一個數的倍數(讓學生自己在紙上寫,然后交流:你是怎么找的?)
提問:
(1)3的最小的倍數是幾?最大的呢?
(2)3的倍數有無數個,那么該怎么表示?
2、完成試一試。
反思:怎樣找一個數的倍數比較方便?一個數的.倍數最小是幾?找得到最大的倍數嗎?
3、找一個數的因數。
先讓學生獨立找36的因數,再進行交流。
提問:36最小的因數是幾?最大的呢?怎樣找才能保證不重復不遺漏?對好的方法及時的給以肯定。
完成試一試
4、提問:15的最小因數是幾?最大的因數是幾?16呢?你有什么發現?
5、鞏固練習:
(1)4的倍數有:
(2)25以內4的倍數有:
(3)30的因數有:
(4)15的因數有:
(三)課堂小結:略。
(四)作業布置:
1、6的倍數有:
2、7的倍數有:
3、100以內9的倍數有:
4、24的因數有:
5、11的因數有:
二、教學反思:
本節課重點圍繞“理解倍數和因數的含義,能按要求找出一個數的倍數和因數”進行教學。在寫一個數的倍數和因數時,要讓學生經歷探索的過程,在相互交流時,得出最優的方法,在探索倍數和因數的規律時,既不能讓學生毫無目的的去探究,也不能把這個結論直接告訴學生。
先出示一些具體的數,從這些具體的數的基礎上進行探究,起到了較好的效果。在探究一個數的因數的方法時,先在前面孕伏著除法中也有倍數和因數,為探究一個數的因數埋下了伏筆。這個方法要比倍數的方法難一些,教師要有耐心,把學生的方法全部板書在黑板上,然后通過比較,發現商也是這個數因數,又發現一個數的因數,是成隊出現的,所以怎樣做到既不重復,又不遺漏,就要有序思考,與前面學過的找規律的方法有機地聯系在一起。
倍數與因數教學設計2
教學目標
1、知識與技能
(1)能直接在方格圖上,數出相關圖形的面積。
(2)能利用分割的方法,將較復雜的圖形轉化為簡單的圖形,并用較簡單的方法計算面積。
2、過程與方法
(1)在解決問題的過程中,體會策略、方法的多樣性。
(2)學會與人交流思維過程與結果。
3、情感態度與價值觀
積極參與數學學習活動,體驗數學活動充滿著探索、體驗數學與日常生活密切相關。
重點難點及處理問題的策略
1、重點是指導學生如何將圖形進行分割,從而讓學生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。
2、借助圖形,讓學生動手,自主探索、合作交流解決問題的方法。
教學過程:
一、創設情境、揭示新課。
我要說班里每位同學都是優秀的設計師!因為大家都在設計著自己美好的將來,所以在很用功的學習。希望大家繼續努力,使自己美好的設計成為現實。下面我們來看一看,我們的同行——一位地毯圖案設計師,設計的圖案。
展示地毯上的圖形,讓學生仔細觀察圖形特點,說發現。
地毯是正方形,邊長為14米藍色部分圖形是對稱的,……
師:看這副地毯圖,請你提出數學問題。
根據學生的回答展示問題:“地毯上藍色部分的面積是多少?”
師板書課題:地毯上的圖形面積
二、自主探索、學習新知
如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?
1、學生獨立解決問題
要求學生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。
2、小組內交流、討論
3、班內反饋
請學生匯報藍色部分面積,重點匯報求藍色面積的.方法。對于每一種方法,只要學生說得合理都給以肯定。
學生的答案也許有:
(1)直接一個一個地數,為了不重復,在圖上編號;(數方格法)
(2)因為這個圖形是對稱的,所以平均分成4份,先數出一份中藍色的面積,再乘4;(化整為零法)
(3)用總正方形面積減去白色部分的面積;(大減小法)
(4)將中間8個藍色小正方形轉移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉移填補法)
4、學生總結求藍色部分面積的方法。
三、鞏固練習、拓展運用(課本第19頁練一練)
1、第1題
(1)學生獨立思考,求圖1的面積。
(2)說一說計算圖形面積的方法。引導學生了解“不滿一格的當作半格數”。
2、第2題
獨立解決后班內反饋。
3、第3題
(1)學生獨立填空。求出每組圖形的面積。學生完成后班內交流反饋答案。
(2)學生觀察結果,說發現。
第(1)題的4個圖形面積分別為1、2、3、4的平方數;第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。
四、全課小結,課后拓展
今天我們進行了那些活動,你收獲了什么?
師:對于計算方格圖中規則圖形的面積,我們可以分割,可以直接數,可以“大減小”,還可以轉移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數學課上我們將繼續學習。課后,有興趣的同學可以在空白方格紙上設計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。
倍數與因數教學設計3
教學目標:
1、理解和掌握因數和倍數的概念,認識他們之間的聯系和區別。
2、學會求一個數的因數或倍數的方法,能夠熟練的求出一個數的因數或倍數。
3、知道一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
教學重點:
掌握找一個數的因數和倍數的方法。
教學難點:
理解和掌握因數和倍數的概念。
教學準備:
課件
教學過程:
一、創設情境,引入新課
師:我和你們的關系是……?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。是啊,人與人之間的關系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關系,他們之間的關系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數學王國里,在整數乘法中也存在著這樣相互依存的關系,這節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)
(設計意圖:先讓學生體會關系,再通過同桌關系讓學生體會相互依存,不能獨立存在,進而為因數與倍數的相互依存關系打下基礎。)
二、探究新知
(一)1、出示主題圖,仔細觀察,你得到了哪些數學信息?
學生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養學生提取數學信息的能力和語言表達能力,即:數學語言要求簡練嚴謹)
教師 :你們能夠用乘法算式表示出來嗎?
學生說出算式,教師板書:2×6=12
2. 出示:因為2×6=12
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
(注:由乘法算式理解因數和倍數相互依存,不能獨立存在。)
3.教師出示圖2:師:根據圖上的內容,可以寫出怎樣的算式?
3×4=12
從這道算式中,你知道誰是誰的因數?誰是誰的倍數嗎?(讓學生自己說一說,進而加深因數倍數關系的認識。)
教師小結:因數和倍數是相互依存的,為了方便,我們在研究因數與倍數時,我們所說的數是整數,一般不包括0.
4、師:誰來說一道乘法算式考考大家。
(指名生說一說)
5、讓其他學生來說一說誰是誰的因數誰是誰的倍數。
(注:可以讓幾位學生互相說一說。)
6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數誰是誰的倍數。
(設計意圖:18÷3=6是為了培養學生思維的逆向性)
(二)找因數:
1、師:我們知道了因數與倍數之間的關系,從上面的研究中,我們還可以知道,一個數的因數還不止一個12的因數有: 1,2,3,4,6,12. 那么怎樣求一個數的因數呢?
出示例1:18的因數有哪幾個?
注意:請同學們四人以小組討論,在找18的因數中如何做到不重復,不遺漏。
學生嘗試完成:匯報
(18的因數有: 1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
師:18和36的'因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
請同學們觀察一個數的因數有什么特點。
在教師引導下,學生總結出:任何一個數的因數,最小的一定是( ),而最大的一定是( ),因數的個數是有限的。
(設計意圖:培養學生探索、歸納、總結、概括的能力。)
3、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如 18的因數
1、2、3、6、9、18
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(三)找倍數:
1、我們學會找一個數的因數了,那如何找一個數的倍數呢?2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……
師:為什么找不完?
你是怎么找到這些倍數的?
(生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍數最小是幾?最大的你能找到嗎?
2、再找3和5的倍數。
3的倍數有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……倍)
5的倍數有:5,10,15,20,……
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示 :2的倍數,3的倍數,5的倍數
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢? 讓學生觀察2、3、5的倍數,說一說一個數的倍數有什么特點。
學生試著總結:一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
三、課堂小結:
通過今天這節課的學習,你有什么收獲?
學生匯報這節課的學習所得。
四、拓展延伸。
1、教材16頁練習二第5題。學生在小組中討論交流:這四位同學的說法是否正確?為什么?
2、教材第15頁練習二第1題。組織學生獨立完成,然后在小組中互相交流檢查。
倍數與因數教學設計4
教學內容
冀教版《數學》四年級上冊,第51頁~52頁。
知識與技能:
1、學生經歷2、5倍數特征的探索過程,掌握2、5倍數的特征,會正確判斷一個數是不是2、5的倍數。
2、在觀察、猜想、驗證和討論的過程中,提高探究問題和合作學習的能力。
過程與方法:
在合作學習中培養學生觀察、分析、判斷的能力,使學生逐漸形成合作意識和初步的探索精神。
情感、態度和價值觀:
培養學生學習習慣的養成,培養學生自主學習的策略,養成良好品質。
重點
掌握2、5倍數的特征,運用2、5倍數的特征判斷一個數是不是2或5的倍數。
難點
通過探索2、5倍數的特征,判斷一個數是不是2或5的倍數。
教學過程:
一、炫我兩分鐘
一名學生回憶倍數的知識,請其他學生快速說出指定自然數的倍數(列舉7的倍數、9的倍數);請同學判斷一個數是不是另一個數的倍數(32是8的倍數嗎?21是4的倍數嗎?)。
【設計意圖:鍛煉學生的口算能力,回憶鞏固前面的知識,為本節課做準備。】
學生完成“炫我兩分鐘”后,教師展示“本領”:請學生任意說出一個數,教師很快判斷出它是不是2或5的倍數。
【設計意圖:通過教師的展示,激起學生學習的欲望和興趣,教師及時引入課題。】
二、嘗試小研究
學生獨立完成嘗試小研究第一題,找出2和5的全部倍數。學生找完后找學生匯報,并說明找倍數的方法。為探索2、5倍數的特征做好準備。
課上嘗試小研究
1、在1~100的自然數中,找出5的所有倍數,用“△”圈出來;找出2的所有倍數,用“○”圈出來。
先自己獨立思考,再和小組內成員交流,最后記錄組內討論的結果。
12345678910
11121314151617181920
21222324252627282930
31323334353637383940
41424344454647484950
51525354555657585960
61626364656667686970
71727374757677787980
81828384858687888990
919293949596979899100
2、認真觀察,細心發現。
①5的倍數有什么特征?
我發現5的倍數特征是:x。
②2的倍數有什么特征?
我發現2的倍數特征是:x。
【設計意圖:讓學生親身經歷找5的倍數和2的倍數,通過觀察、比較、歸納,得出5的倍數的特征、2的倍數的特征及一個數既是2的倍數,又是5的倍數的特征。】
三、小組合作探究
匯報完2和5的全部倍數后,引導學生探究2、5倍數的特征,探究前出示活動建議。學生自主探究后,進行小組合作討論。
交流前出示小組合作交流建議:
先自己獨立思考,再和小組內交流,最后由記錄員記錄好組內討論的結果。組長要確定好發言順序。
【設計意圖:通過同學之間的交流,使學生對知識有一個梳理和概括,活躍學生的思維,在組內進行初步的總結。】
四、班級展示提升
1.全班交流,師生評價。
請一個小組的同學進行匯報,其他小組的同學傾聽、補充、質疑。
2.引向深入,總結點撥。
匯報、交流后,教師進行及時點撥:
5的倍數個位上不是0就是5;
2的倍數個位上是0、2、4、6或8(2的倍數都是偶數);
一個數既是2的倍數,又是5的倍數,個位上是0。
3.互相糾錯。
組內同學檢查一下嘗試小研究中的題做得對不對,如果不對,加以改正。
【設計意圖:學生通過對自己的嘗試進行總結交流,加深對獲取知識點認識,通過與前面學過的知識點比較、拓展,幫助學生構建知識結構。教師適時的點撥、總結,使學生的知識更加系統化,讓學生對關鍵知識進一步深化。對學案中的錯誤及時改正,這也保持了學生做嘗試小研究的'積極性,可能他的問題沒能在全班展示,在在小組內得到了交流和重視。】
五、挑戰自我
1、小青蛙喜歡在荷葉上玩。請你幫它選一選:
5的倍數2的倍數同時是2、5的倍數
【設計意圖:通過富于趣味性的操作活動,及時鞏固學生對2的倍數和5的倍數的判斷。練習中還有意設計了既不是2的倍數、也不是5的倍數的數,加深學生對2和5倍數特征的理解,使學生明確不符合特征的數就不是2和5倍數。】
2、一本30頁的畫冊,任意翻開后看到的頁數,有一個頁數既是2的倍數,又是5的倍數。想一想:看到的這一頁可能是哪一頁?
【設計意圖:在課本練習的基礎上,增加一個“看到的這一頁可能是哪一頁?”的問題,引導學生先找到“既是2的倍數,又是5的倍數”的數,再思考書頁碼的特點,進而順其自然的得到答案。降低問題的難度,給學生提供一個解決問題的思路。】
3、□里能填幾?
(1)9□是5的倍數,□里可以填;
(2)6□是2的倍數,□里可以填;
(3)7□既是2的倍數,又是5的倍數,□里可以填;
(4)□0既是2的倍數,又是5的倍數,□里可以填。
(學生回答完,教師追問:“□3”呢?怎樣填是2的倍數?怎樣填是5的倍數?)
【設計意圖:通過形式多樣的練習,培養學生的發散思維能力,進一步加深對2和5倍數特征的理解。通過追問,學生發現不管方框里填幾都不能是2或者5倍數,加深學生的知識的理解。】
4、在下面的數字卡片中選出三張,按要求組三位數。
6
5
0
7
(1)2的倍數:;
(2)5的倍數:;
(3)既是2的倍數,又是5的倍數:。
用2和5兩個數字組成25是5的倍數;組成52就是2的倍數了。
用7和0兩個數字組成70,既是2的倍數;又是5的倍數。
【設計意圖:通過形式多樣的練習,培養學生的發散思維能力,進一步加深對2和5倍數特征的理解。】
數學游戲(拓展練習)
請你在0、1、2、3、4、5、6、7、8、9的數字中,選擇數字組成新的數。像下面這樣進行游戲。
【設計意圖:通過數學游戲,寓教于樂,鞏固所學知識的同時,提高學生表達能力。】
六、反思收獲
這節課你有哪些收獲?你是怎樣學到新的知識的?總結自己的表現。
【設計意圖:引導學生進行小結,有利于知識的積累和自主學習能力的提高,培養學生自我總結和評價的習慣和能力。】
倍數與因數教學設計5
教學內容:青島版教材小學數學五年級上冊88—91頁。
教學目標:
1、使學生初步認識因數和倍數的含義,探索求一個數的因數或倍數的方法,發現一個數的因數、倍數中最大的數、最小的數及其個數方面的特征。
2、使學生在認識因數和倍數以及探索一個數的因數或倍數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平,對數學產生好奇心,培養學習興趣。
教學重點:理解因數和倍數的意義,探索求一個數因數或倍數的方法。
教學難點:探索求一個數因數或倍數的方法。
教具準備:多媒體課件、學生練習題
教學過程:
一、談話導入。
師:同學們看這是什么?
生:小正方形。
師:想不想知道王老師給大家帶來了多少個這樣的小正方形?
生:想。
師:多少個?
生:12個。
師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
生:能。
【設計意圖】:以學生熟悉情景引入,激發學生的好奇心。
二、教學因數和倍數的意義
師:增加一點難度,用一道算式說明你的想法,讓其他同學猜一猜你是怎么擺的,好嗎?
生:好!
學生匯報:
生1:1×12=12
師:他是怎么擺的?
生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。
課件出示擺法。
師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)
生2:2×6=12
師:猜一猜他是在怎么擺的?
生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。
師:這兩種情況,我們也算一種。
生3: 3×4=12
師:他又是怎么擺的?
生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。
師:還有其他擺法嗎?
生:沒有了。
師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數和倍數(板書課題)
2.教學“因數和倍數”的意義。
師:我們以3×4=12為例,在數學上可以說3是12的因數,4也是12的因數,12是3的倍數,12也是4 的倍數。這里還有兩道算式,同桌兩個同學先互相說一說誰是誰的因數,誰是誰的倍數。
學生匯報:任選一道回答。
生1:12是12的因數,1是12的因數,12是2的倍數,12是1的倍數。
師:說的多好啊!雖然有點像繞口令,但數學上確實是這樣的。我們再一起說一遍。
師:還有一道算式,誰來說一說?
生:2是12的因數,6是12的因數,12是2的倍數,12也是6的倍數。
師明確:為了研究方便,我們所說的因數和倍數都是指自然數,(0除外)。
師:通過剛才的練習,你有沒有發現12的因數一共有哪些? (生邊說老師邊有序的用課件出示12的所有的因數。)
師:好了,剛才我們已經初步研究了因數和倍數,屏幕顯示:試一試:你能從中選兩個數,說一說誰是誰的因數?誰是誰因數和倍數?行不行?先自己試一試。
3、5、18、20、36
【設計意圖】讓學生經歷知識的形成過程。通過實際例子,讓學生進一步理解,因數和倍數之間存在著相互依存的關系。
三、教學尋找因數的方法。
1、找一個數的因數。
師:看來同學們對于因數和倍數已經掌握的不錯了。不過剛才老師在聽的時候發現一個奧秘,好幾個數都是36的因數,你發現了嗎?誰能在五個數中把哪些數是36的因數一口氣說完?
師:說出幾個36的因數并不難,關鍵是怎樣找的既有序又全面,有沒有信心挑戰一下?
生:有。
師:老師提個要求:
1)、可以獨立完成,也可以同桌交流。
2)、把這個數的因數找全以后,把你的方法記錄在下面。并總結你是怎樣找的。
2、探索交流找一個數的因數的方法。
找一名有代表性的作業板書在黑板上。
師:他找對了嗎?
生:沒有,漏下了一對。
師:為什么會漏掉?僅僅是因為粗心嗎?
生:不是,他沒有按照一定的順序找!
師:那么要找到36所有的因數關鍵是什么?
生:有序。
師生共同邊說邊有序的把36的所有的因數板書出來。 師:還有問題嗎?
生:沒有了。
生:你們沒有,老師有一個問題,你們為什么找到6就不再接著往下找了?
生:再接著找就重復了。
師:那么找到什么時候就不找了?
生:找到重復了,就不在往下找了。
師、生共同總結找因數的方法。(一對一對有序的找,一直找到重復為止)。
師:有失誤的學生對自己的錯誤進行調整。
3、鞏固練習。
找出下面各數的因數。
4、尋找一個數的因數的特點。
【設計意圖】放手讓學生自主找一個數的因數,并總結找一個數因數的方法。學生非常喜歡,而且也能夠讓學生在活動中提升。
四、教學尋找倍數的方法。
1、找一個數的倍數。
師:剛才我們學習了找一個數的因數,那么你能像剛才一樣有序的找出一個數的所有倍數嗎?
生:能!
師:試試看,找個小的可以嗎?
生:行!
師:找一下3的倍數。30秒時間,把答案寫在練習紙上。 ??
師:有什么問題嗎?
生:老師,寫不完。
師:為什么寫不完?
生:有很多個!
師:那怎么才能全都表示出來呢?
生:可以加省略號。
師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?
師:誰能總結一下你是怎樣找到的.?
生:從小到大依次乘自然數。
師:你真會思考!
課件出示3的倍數。
2、找5、7的倍數。
師:我們再來練習找一下5的倍數。
生:5的倍數有:5、10、15、20、25??
生:7的倍數有:7、14、21、28、35??
師:你能像總結一個數因數的特點一樣,來總結一下一個數的倍數有什么特征嗎?
生:能!
學生總結:一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
【設計意圖】在探索求一個數的倍數和因數的方法時,創設具體的情境讓學生去合作交流,并結合具體事例,讓學生自己觀察并發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征,豐富了教學方式,讓學生在觀察中發現,在合作中體驗成功的喜悅,在主動參與、樂于探究中發展自我。
四、知識拓展
認識“完美數”。
師:(課件出示6的因數)在6的因數中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽!)我們把6的因數中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數學家給這樣的數起了一個名字,叫“完美數”。依次出示第二個、第三個一直到第六個完美數。
小結:其實有關因數和倍數的秘密還有很多,它們在等待著同學們在以后的學習中去研究、去探索。
【設計意圖】豐富學生的知識,陶冶學生的情操。
教學反思:
找一個數因數的方法是本節課的難點,如何做到既不重復又不遺漏地找36的因數,對于剛剛對倍數因數有個感性認識的學生來說有一定困難,這里充分發揮小組學習的優勢。先讓學生自己獨立找36的因數,我巡視了一下三分之一的學生能有序的思考,多數學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數,如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導和總結就更好了。
倍數與因數教學設計6
教材分析
“底和高”是在認識三角形、平行四邊形、梯形之后進行的教學內容,以此來進一步認識三角形、平行四邊形和梯形的特征,也為后續學習圖形的面積計算打下基礎。本課時內容以直角以及垂直為知識基礎,以三角形、平行四邊形和梯形的認識為認知背景,教材利用一塊平行四邊形的木板做成一張盡可能大的長方形桌面作為認知情境,展開自主活動,讓學生主動積累高的表象,并形成高的概念。值得注意的是:本課時認識的高主要指圖形內的高,而對于圖形外的高不作要求
教學目標
1.通過動手把一塊平行四邊形木板做成一長盡可能大的長方形桌面等相關活動,找到高這條特殊線段,體驗高的基本特征;
2.能判斷、畫出、測量三角形、平行四邊形、梯形的高;
3.在方格紙上根據圖形的高和底的數據畫符合條件的圖形。
教學重點:
判斷、畫出、測量三角形、平行四邊形、梯形的高
教學難點:
在畫一個圖形高的過程中對高的概念的運用
教學準備
(平行四邊形、三角形、梯形)卡片、剪刀、三角板
教學過程
(一)談話導入
1、教師:請同學們說說你們家的餐桌是什么形狀的?還見過什么形狀的餐桌?
學生:圓形、橢圓形、長方形、正方形……
2、教師:說得很好!老師就特別喜歡方形的餐桌,而且老師有個習慣,自己能做到的事情就盡量自己去做。老師家里有一塊平行四邊形的木板,可是太大了,搬到課堂上比較麻煩,但老師帶來了與它形狀一樣的圖形(出示平行四邊形),老師也為每位同學準備了一張,老師想用這塊木板做一張盡可能大的長方形桌面,該從哪鋸呢?同學們幫幫老師,行嗎?那我們就動手做一做。
板書課題:動手做
(設計意圖:從學生的學生活經驗出發,調動學生的積極性,激發學生樂于助人的情操,營造寬松、自由的空間,使學生在積極主動參與探究活動中去尋求正確的答案,把學習數學的主動權交給學生
3、學生制作,教師巡視指導。
(設計意圖:學生在動手實踐中探索不同的制作方法,在小組中展示、交流、學習,留給學生充分的思考及表現自我的時間和空間)。
4、教師:同學們好聰明!想出了很多種方法做出了盡可能大的長方形,老師會選擇其中的一種方法。謝謝你們幫了老師的.忙!
(二)認識“高”
1、出示平行四邊形。
(1)請同學們想一想,剛才剪的過程中你是怎樣想的?誰來說說你的理由。(貼平行四邊形)
(2)學生回答。(引導學生抓住對邊之間的線段、垂直等關鍵詞)
(3)教師小結:其實剛才同學們都是沿著平行四邊形其中的一條高剪的,那怎樣概括平行四邊形的高呢,請大家在小組里互相說一說。
(4)教師收集各小組的信息、意見,引出平行四邊形的高的概念。
教師:同學們同意這樣的小結嗎?
學生:同意。
2、出示三角形
(1)教師:這是什么圖形?請同學們對比平行四邊形,看了這個三角形你想說點什么?請大家在小組里說一說,什么是三角形的高?
(2)各小組匯報,教師收集信息,出示三角形的高的概念。
(設計意圖:培養學生與人合作、交流的能力,讓學生經歷數學知識的形成過程,培養學生學習數學的興趣。)
(3)嘗試練習。
①教師:同學們想不想自己動手畫一畫三角形的高?
②學生試畫,教師巡視指導。
教師:同學們畫的時候發現什么問題?
學生:我用直尺畫很難畫垂直……
③師生交流得出:畫各種圖形的高最好用三角板畫 ,畫出的高更精確。
④師生共議用三角板畫圖形的高的最佳方法。
3、出示梯形
(1)教師:看到這個圖形,你想提出什么數學問題?
(引導學生說出梯形有幾組平行的對邊,它的高是怎樣得到的。)
(2)師生共同小結梯形的高的概念。
4、教師:從三種圖形的高的概念中你發現了什么?和你周圍的同學說一說。
(引導學生觀察、說出它們的高都是垂直線段。)
(三)練習鞏固
1、課本21頁試一試第1題。
學生依次找出各個圖形中的高是哪條線段,并在圖中標出來,完成后集體訂正。
2、課本21頁練一練第1、2題
讓學生任選一個圖形畫出相對邊的高。完成后要求小組內互評,說說對方所畫圖形的高的意見。(通過練習使學生體會到邊和高的對應關系)
3、課本21頁練一練第3題
動手量一量,你發現了什么?
讓學生在小組內測量三個同高但形狀不同的三角形的高,說說他們的發現。(設計意圖:充分發揮小組合作學習的優勢,將發現的問題在小組內討論,這樣不僅讓學生掌握了解決問題的策略,也培養了學生的合作精神。)
(四)總結反思
這節課大家有什么收獲?有什么問題要向老師提出的嗎?
(五)作業
課本22頁練一練第4題
倍數與因數教學設計7
教材分析
本單元是在學生學過整數的認識、整數的四則計算、小數、分數的認識等知識的基礎上展開教學的。本單元的內容主要包括因數和倍數,2、5、3的倍數的特征,質數和合數等知識。通過這部分內容的學習,既可以讓學生在前面所學的整數知識基礎上進一步探索整數的性質,又有助于發展他們的抽象思維。這些知識的學習是以后學生學習公倍數與公因數、約分、通分、分數四則運算等知識的重要基礎。
學生已經學過整數的認識、整數的四則計算、小數、分數的認識等知識,但本單元的知識屬于“數論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯系又很緊密,部分學生學習時可能會有一定的困難。教材明確規定在研究因數與倍數時,限制在不包括0的自然數范圍內研究,避免由此帶來一些小學生尚不必研究的問題。教學時要注意以下兩點:
學情分析
1.利用乘法引導學生認識因數和倍數。教材在揭示倍數和因數的概念時,沒有像原來的教材那樣,先揭示整除的概念,再利用整除認識倍數和因數,而是讓學生通過分類,用除法算式認識倍數和因數。在找一個數的倍數時,也是讓學生運用乘除法的'知識,探索找一個數的倍數的方法。
2.注重引導學生在數學活動中探索數的特征。教材非常強調學生的數學學習活動,倡導多樣化的學習方式,組織學生在活動中探索、發現數的特征。如在探索2、5和3的倍數的特征時,都是先讓學生在100以內數的表格中圈出2、5的倍數,再通過分析歸納或猜想驗證等方法發現它們的倍數的特征。
教學目標
知識技能:
1.使學生掌握因數、倍數、質數、合數等概念,知道相關概念之間的聯系和區別。
2.讓學生通過自主探索,掌握2、5、3的倍數的特征。
數學思考:逐步培養學生的數學抽象能力,以及滲透分類的思想。
問題解決:經歷與他人合作交流解決問題的過程,嘗試解釋自己的思考過程。
情感態度:通過利用因數和倍數的相關知識來解決相應的實際問題,使學生進一步體會數學的應用價值。
課時劃分:8課時
1.因數和倍數……………………2課時
2.2、5、3的倍數的特征………2課時
3.質數和合數……………………3課時
4.整理和復習……………………3課時
倍數與因數教學設計8
教學目標:
1、使學生結合具體情境初步理解倍數和因數的含義,初步理解倍數和因數相互依存的關系。
2、使學生依據倍數和因數的含義以及已有的乘法和除法知識,通過嘗試和交流等活動,探索并掌握找一個數的倍數和因數的方法,能在1-100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。
3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中,進一步感受數學知識的內在聯系,提高數學思考的水平。
教學重點:
理解倍數和因數的含義。
教學難點:
探索并掌握找一個數的倍數和因數的方法。
教學過程:
一、理解倍數和因數
1、用12個同樣大的正方形拼成一個長方形,可以怎樣擺?
先獨立思考,在同桌交流自己的看法,再集體交流。根據學生的回答,教師出示相應的拼法,并列式。
2、在4×3=12中,12是4的倍數,12也是3的倍數,3和4都是12的因數。你能照老師的樣子試著說一說嗎?如果有學生只說倍數和因數,讓學生通過爭論明白倍數和因數表示的是兩個數之間的關系,因此一定要說誰是誰的倍數,誰是誰的因數。
3、下面這些算式也能用倍數和因數表示嗎?
16÷2=85+6=1118-6=12
學生如果有爭論,讓學生說說自己的理由。由16÷2=8可以得到2×8=16,實際上16是2和8的乘積,所以也可以用倍數和因數來表示。
4、你能自己寫出一條算式,用倍數和因數來說一說嗎?學生自己思考,寫一寫,然后集體交流。
二、探索找一個數的倍數的方法
1、談話:3的倍數有哪些呢?我們來找找看。一分鐘內完成。
1分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?
2、3的倍數有很多,我們不能都寫出來,就用省略號來代替。下面,誰來說說看,3的倍數是怎么找的?小結:找一個數的倍數,只要用這個數去乘以1、2、3、。就能得到它的倍數。
3、填一填:2的'倍數有________________________
5的倍數有________________________
4、觀察上面的幾個例子,你有什么發現?
先小組交流,再指名回答。
指出:一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
三、探索找一個數因數的方法
1、嘗試:用自己的方法找出36的所有因數。
(1)先思考再嘗試。
(2)交流和評價
2、用這樣的方法,找找16的因數和7的因數。
3、討論:一個數的因數有哪些特征?
指出:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。
四、練習
練習一、二、三。
五、總結
這節課你有什么收獲?
反思:
讓學生借助乘法算式引出因數和倍數的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數學到數學,讓學生自主體驗數與形的結合,進而形成因數與倍數的意義.使學生初步建立了“因數與倍數”的概念。
在教學找一個數的倍數時,讓學生在1分鐘內寫3的倍數,再組織交流:3的倍數有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“1分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?”設疑,置疑,激發學生的反思力度,有效地激發了學生的求知欲望,從而積極主動地獲得知識。
找一個數因數的方法是本節課的難點,如何做到既不重復又不遺漏地找36的因數,對于剛剛對倍數因數有個感性認識的學生來說有一定困難,這里可以充分發揮小組學習的優勢。先讓學生自己獨立找36的因數,我巡視了一下五分之一的學生能有序的思考,多數學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數,如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結。
倍數與因數教學設計9
教學目標:
1、依據倍數和因數的含義和已有的乘除法知識,自主探索總結找一個數的倍數和因數的方法.
2、使學生在認識倍數和因數以及探索一個數的倍數或因數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。教學重點:理解因數和倍數的含義.教學難點:自主探索并總結找一個數的倍數和因數的方法.教學過程:
一、情境激趣。
腦筋急轉彎:有三個人,他們中有2個爸爸,2個兒子,這是怎么回事?
教師說明:人和人之間的關系是相互依存,數和數之間也是相互依存的。揭題:
二、初步認識倍數和因數。
1、創設情境。
用12個同樣大的正方形拼成一個長方形,可以怎么拼?請同學們先想象一下,然后說出你的擺法,并用乘法算式表示出來。
學生匯報拼法,教師依次展示長方形的拼圖,并板書:
4×3=1
26×2=12
12×1=12
教師根據4×3=12揭示:4×3=12
12是4的倍數,12也是3的倍數,4和3都是12的因數。提出要求:你能用倍數和因數說一說6×2=12
12×1=12嗎?
2、深化感知。
(1)你能舉出一些算式,說說誰是誰的倍數,誰是誰的因數嗎?
教師說明:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的`自然數。
三、探求一個數的倍數。
1、設疑。
在剛才的學習中,我們知道了3的倍數有
12、18。除了
12、18還有別的嗎?請在紙上寫出3的倍數。你能完成得又對又好嗎?。學生在書寫過程中引發沖突:為什么停下來不寫了?有什么困難嗎?引導學生討論后達成共識:加省略號表示寫不完。
2、交流。
揭示“有序”,為什么要有序地寫倍數呢?全班討論:“你是怎么寫3的倍數的?”。
3×
13×
2 3×
3……
3
3+3
6+3
……
一三得三二三得六三三得九
引導學生討論得出:用依次×
1、×
2、×3……寫出3的倍數。
3、深化:請寫出2的倍數,5的倍數。
4、引導觀察,發現規律。
小組討論:觀察這三道例子,你有什么發現?全班交流,概括規律。
5、小結:發現這些規律可以更好地幫助我們尋找一個數的倍數。
四、探求一個數的因數。
1、設疑。
剛剛我們學會了找一個數的倍數,接下來我們來找一個數的因數。
請寫出36的所有因數,
2、組織討論。
你是怎么找36的因數的?
( )×( )=36從一道乘法算式中可以找到2個36的因數,6×6=36呢?
36÷( )=( )從一道除法算式中也可以找到2個36的因數。
3、討論“多”。問:寫得完嗎?你可以按照什么順序寫?
師動畫演示36的因數(從兩端往中間寫),同時指出:當兩個因數越來越接近時,也就快要寫完了。
4、鞏固深化。
請寫出15的因數,16的因數。學生練習后組織評講。
5、引導觀察,發現規律。
問:通過觀察這三道例子,你能發現什么規律?
6、小結:寫一個數的因數時可以從1和它本身來寫,從小到大依次尋找。
五、鞏固拓展。
1、快樂大轉盤
2、猜數游戲。
六、老師總結:利用微課對整節課做一個總結。
七、學生總結:在這節課的學習中,有哪些地方給你留下了深刻的印象?
集體研討發言稿
這是一節概念課,關于“倍數和因數”教材中沒有寫出具體的數學意義,只是借助乘法算式加以說明,進而讓學生探究尋找一個數的倍數和因數。通過備課,我梳理出這樣一個教學脈絡:乘法算式——倍數和因數——乘法算式——找一個數的倍數和因數。從教材本身來看,這部分知識對于五年級學生而言,沒有什么生活經驗,也談不上有什么新興趣,是一節數學味很濃的概念課。如何借助教材這一載體,讓學生在互動、探究中掌握相應的知識,讓乏味變成有味呢?我從以下三個方面談一點教學體會。
一、設疑遷移,點燃學習的火花。
良好的開頭是成功的一半。我采用腦筋急轉彎中的一道題作為談話進入正題,不僅可以調動學生的學習興趣,看似不相關的兩件事例中隱藏著共同點:一一對應、相互依存。對感知倍數和因數進行有效的滲透和拓展。
教學找一個數的倍數時,我依據學情,設計讓學生獨立探究尋找3的倍數。學生發現3的倍數寫不完時面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數學問題,自己發現問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。教師一聲親切的問候:“怎么停下來了呢?”、一聲驚訝:“哦!寫不完呀?”、一句激勵:“能想出辦法嗎?”。看似教師“怠工”的預設,是為了學生“越位”的生成
二、滲透學法,形成學習的技能。
由于一個數倍數的個數是無限的,那么如何讓學生體會“無限”、又如何有序寫出來呢?我設計了嘗試練習引出沖突討論探究這么一個學習環節。學生帶著“又對又好”的要求開始自主練習,學生找倍數的方法有:依次加
3、依次乘
1、
2、3……、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞“好”展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數,既快而且不受前面倍數的影響,可以很快地找到第幾個倍數是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了“寶貴”的學習時間,但是學生從中能體會到學習的方法,發展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風光無限。
三、活用教材,拓展學習的深度。
教材中安排36÷()=()這一道除法算式來找一個數的因數。我覺得這樣的設計可能會帶來幾點不足,其一:學生感知倍數和因數的概念、尋找一個數的倍數都是借助乘法算式,同樣,找一個數的因數也可以利用乘法,讓所學的知識形成系統豈不更有利于學生進行有效學習嗎?其二:從學情來分析,相對于除法,學生更熟練、更喜歡運用乘法。以學定教,真正做到以人為本。我在教學時引導學生討論得出:借助()×()=36來尋找一個數的因數。
課尾,我設計了一兩個游戲,將整堂課的內容進行整理和概括,對易混淆的概念加以比較,對后續的學習進行適當的鋪墊。融知識性、趣味性為一體,收到了課雖止意未盡的良好效果。
縱觀整節課,學生在學習過程中自始至終處于主體地位,嘗試練習、自主探索、解決問題,教師只是加以引導,以合作者的身份參與其中。整節課似行云流水、波瀾不驚,但我想學生在思維上得到了訓練,探究問題、尋求解決問題策略的能力也會逐步得到提高的。
倍數與因數教學設計10
教學目標:
1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。
2、使學生依據倍數和因數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。
3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
教學重點:
理解因數和倍數的含義,知道它們的關系是相互依存的。
教學難點:
探索并掌握找一個數的因數的方法。
教學準備:
12個小正方形片、每個學生的學號紙。
教學過程設計:
一、認識倍數、因數的含義
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4×3=1212×1=126×2=12
2、通過剛才的學習,我們發現用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。
3、今天我們就來研究倍數和因數的知識。
(揭示課題:倍數和因數)
(1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?
指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?
小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。
(2)出示:20×3=60,36÷4=9。同桌相互說一說誰是誰的倍數?誰是誰的因數?
指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。
二、探索找一個數倍數的方法。
1、從4×3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
2、提問:什么樣的數是3的倍數?你能按從小到大的順序有條理的說出3的倍數嗎?能全部說完嗎?可以怎么表示?
3、議一議:你發現找3的倍數有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數。
4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?
生獨立完成,集體交流。注意用……表示結果。
5、觀察上面的3個例子,你發現一個數的倍數有什么特點?
根據學生的交流歸納:一個數的.倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。
6、做“想想做做”第2題。
學生填表后討論:表中的應付元數是怎么算的?有什么共同特點?你還能說出4的哪些倍數?說的完嗎?
二、探索求一個數因數的方法。
1、學會了找一個數倍數的方法,再來研究求一個數的因數。
你能找出36的所有因數嗎?
2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰成功。并盡可能把找的方法寫出來。教師巡視,發現不同的找法。
3、出示一份作業:對照自己找出的36的因數,你想對他說點什么?
4、交流整理找36因數的方法,明確:哪兩個數相乘的積等于36,那么這兩個數就是36的因數。(一對一對地找,又要按次序排列)
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數。
指名寫在黑板上。
6、觀察發現一個數的因數的特點。
一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。
四、課堂總結:學到這兒,你有哪些收獲?
五、游戲:“看誰反應快”。
規則:學號符合下面要求的請站起來,并舉起學號紙。
(1、)學號是5的倍數的。
(2、)誰的學號是24的因數。
(3、)學號是30的因數。
(4、)誰的學號是1的倍數。
思考:
1、倍數和因數是一個比較抽象的知識,教學中讓學生擺出圖形,通過乘法算式來認識倍數和因數。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據乘法算式,從學生已有知識出發,學習倍數和因數,初步體會其意義
2、在得出這些乘法算式以后,先根據4×3=12說明12是3和4的倍數,3和4都是12的因數,使學生初步體會倍數和因數的含義。在學生初
步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環節中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20×3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。
在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。
3、P71例一:找3的倍數,先讓學生獨立思考,“你還能再寫出幾個3的倍數?你是怎樣想的?”在學生交流的基礎上,適時提出:什么樣的數就是3的倍數?你能按照從小到大的順序有條理地說出3的倍數嗎?使學生明確:找3的倍數時,可以按從到大的順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數。在此基礎上,引導學生進一步思考:你能把3的倍數全都說完嗎?從而使學生學會規范地表示一個數的所有倍數,并初步體會到一個數的個數是無限的。隨后,讓學生試著找出2和5的倍數,并正確表達2和5的所有倍數。最后引導學生觀察寫出的3、2和5的所有倍數,發現一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。
4、例二:找36的所有因數,準備讓學生獨立嘗試,但這部分內容對學生來說是個難點,所以我采用了四人小組合作的方式讓學生試著找出36的所有因數。在找36的因數時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復或遺漏到不重復不遺漏。所以,我在教學時允許他們經歷這樣的過程。先按自己的思路、用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。
5、教材P72第2題讓學生解決實際問題在表里填數,把4依次乘1、2、3、……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。
為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。。
倍數與因數教學設計11
教學內容:
人教版小學數學五年級下冊第13~16頁。
教學目標:
1、學生掌握找一個數的因數,倍數的方法;
2、學生能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養學生的觀察能力。
教學重點:
理解因數和倍數的含義;自主探索并總結找一個數的因數和倍數的方法。
教學難點:
自主探索并總結找一個數的因數和倍數的方法;歸納一個數的因數的特點。
教學具準備:
學號牌數字卡片(也可讓學生按要求自己準備)。
教法學法:
談話法、比較法、歸納法。
快樂學習、大膽言問、不怕出錯!
課前安排學號:1~40號
課前故事:
說明道理:
學習最重要的是快樂,要掌握學習的方法。
教學過程:
復習
1、4×0.5=2,所以4和0.5都是2的因數,2是4和0.5的倍數。這句話對嗎?
2、我們在因數與倍數的學習中,只討論什么數?
3、8÷2=4,所以8是倍數,4是因數。這句話對嗎?
今天,我和大家一道來繼續共同探討“因數與倍數”
合作交流、共探新知
探究找一個數的因數的方法(談話法、比較法、歸納法)
請認為自己是18的因數的同學帶著號碼牌上臺來。
a、學生上臺――找對子,擊掌―――。完后提示:老師覺得有點亂,有沒有什么方法可以讓這些找因數的方法有序些?
b、學生再次依照1x18,2x9,3x6的順序一個個講出乘法算式。接著追問:那18的因數就有???從1開始做手勢:(1,18,2,9,3,6)有沒有遺漏的呢?為了讓人家看得更明白,我們從小到大排一下,好不好?
學生預設:有的學生可能會說還有6x3,9x2,18x1等,出現這種情況時可以冷一下,讓學生想一想這樣寫的話會出現什么情況,最后讓學生明白一個數的因數是不能重復的。
c、可是老師覺得這樣子寫又有點亂,有沒有更好的辦法讓人看得更清楚些,讓這些數字的有序地排列?
d、介紹寫一個數因數的方法
可以用一串數字表示;也可以用集合圈的方法表示。
說一說:
18的因數共有幾個?
它最小的因數是幾?
最大的因數是幾?
做一做(在做這些練習時應放手讓學生去做,相信學生的知識遷移與消化新知的能力)
a、30的因數有哪些,你是怎么想的.?
b、36的因數有幾個?你是怎么想的?為什么6x6=36,這里只寫一個因數?
c、對比18、30、36的因數,分別讓學生說說每個數最小的因數是幾?最大的因數是幾?各有幾個因數?
d、讓學生討論:你從中發現了“一個數的因數”有什么相同的地方嗎?
學生總結:
板書:
一個數最小的因數是1;
最大的因數是它本身;
因數的個數是有限的。
輕松一下:
我們來了解一點小知識:完全數,什么叫完全數呢?就是一個數所有的因數中,把除了本身以外的因數加起來,所得的和恰好是這個數本身,那這樣的數我們就叫它完全數,也叫完美數,比如6~~(學生讀課本14頁完全數的相關知識)
b、探究找一個數的倍數的方法(談話法、比較法、歸納法)
因為有了前面探究找一個數因數的方法,在這一環節更可大膽讓學生自己去想,去說,去發現,去歸納。教師只要適當做點組織和引導工作就行。
過渡:大家都很棒!這么快就找出了一個數的因數并總結好了它的規律,現在楊老師想放開手來讓大家自己來學習下面的知識:找一個數的倍數。
a、2的倍數有哪些?你是怎么想的?從1開始做手勢:1x2=2,2x2=4,2x3=6,一倍一倍地往上遞加。
發現:這樣子寫下去,寫得完嗎?寫不完,我們可以用一個什么號來表示?這個省略號就表示像這樣子的數還有多少個?
b、那5的倍數有哪些?按從小到大的順序至少寫出5個來,看誰寫得又快又好
c、對比“一個數的因數”的規律,學生自由討論:一個數的倍數有什么規律呢?
(到這一環節就無需再提問了,要相信學生能夠在類比中找到學習的方法)
學生總結:
板書:
一個數最小的倍數是它本身;
沒有最大的倍數;
倍數的個數是無限的。
(哦,大家這么聰明啊,不用老師教都會了,看來你們真的是太棒了,這也說明學習要學得輕松就一定要掌握~~方法!)
c、看樣子大家都滿懷信心了,那老師就用黑板上的兩個例題來考考大家,看大家的觀察能力是不是真的好厲害。
指著板書中的18的因數與2的倍數提問:
你能從中找出既是18的因數又是2的倍數的數嗎?(計時開始:10,9,8,~~~)
學生完成后表揚:哇,好厲害!
三、深化練習,鞏固新知
1、做練習二的第3題
在題中出示的數字里分別找出8的倍數和9的倍數
注意“公倍數”概念的初步滲透。
做練習二的第6題
四、通過這堂課的學習,你有什么收獲?
五、布置作業:
六、結束全課:
請學號是2的倍數的同學起立,你們先離場,
不是2的倍數的同學后離場。
七、板書設計:
18=1 ×18
18=2 × 9
18=3 × 6
有序 不重復不遺漏
18的因數有:1、2、3、6、9、18。
因 數 和 倍 數
一個數的最小因數是1,最大因數是它本身。
因數的個數是有限的。
2的倍數
2,4,6,……
一個數的最小倍數是它本身,沒有最大倍數。
倍數的個數是無限的。
倍數與因數教學設計12
第一課時
復習內容:因數和倍數。
復習目標:
1:通過整理復習,使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別,
2:掌握2、5、3的倍數的特征,掌握求因數、倍數、最大公因數和最小公倍數的方法,逐步培養學生的抽象思維能力。
復習重點:自主梳理知識,形成自己的認知結構。
復習難點:辨析和理解知識間的區別和聯系。
教學步驟
一、鞏固相關概念,理解它們的區別與聯系。
同學們回憶一下,有關因數與倍數我們學到了什么?介紹了哪些概念?
板書概念名稱,并讓學生說出每個概念及概念之間的區別與聯系。引導學生深入理解相關概念,并形成相應的知識網絡。
二、鞏固練習
1、復習自然數、整數、奇數、偶數、質數、合數。
(1)在2、3、0、91、0.25、1、65和50中,()是自然數,()是奇數,()是偶數,()是質數,()是合數。
(2)教材第138頁第2題。
學生根據題目要求寫出答案,并集體交流。
將其中的合數分解質因數。
問:質數與分解質因數有什么不同?
(3)師小結:自然數按能否被2整除分為奇數和偶數。自然數(0除外)按因數的個數分為1、質數和合數。
2、復習因數、倍數、最大公因數、最小公倍數和互質數。
判斷。完成141頁第1題(引導學生完成,教師訂正)
補充:(1)一個數的倍數都比它的因數大。()
(2)4.2÷0.6=7,我們說4.2是0.6的倍數。()
說明:“4.2是0.6的7倍”是對的,但幾倍與倍數是有區別的'。因數和倍數只在整數范圍內研究。所以,我們不能說0.6是4.2的因數,4.2是0.6的倍數。
(3)24÷6=4,我們說24是倍數,6是因數。()
(4)是互質數的兩個數一定是質數。()
問:互質數與質數有什么不同?
(5)兩個質數相乘的積一定是合數。()
(6)如果一個自然數是6的倍數,那么它一事實上是2的倍數。()
小結:一個數的因數個數是有限的,最小是1,最大是它本身。一個數的倍數的個數是無限的,最小是它本身,沒有最大的倍數。
3復習2、3、5的倍數的特征。
做教材138頁第1題
學生獨立完成,說一說自己是怎樣想的?
4、復習最大公因數和最小公倍數。
完成第141頁第2題(讓學生獨立完成,集體訂正)
小結:當兩個數是互質數時,它們的最大公因數是1,最小公總人倍數數是它們的乘積。當較大數是較小數的倍數時,較小數是它們的最大公因數,較大數是它們的最小公倍數。
三、全課總結(略)
四、作業:
課后反思
復習課是根據學生的認知特點和規律,在學生學習數學知識的某一階段,以鞏固、疏理已學知識、技能,促進知識系統化,提高學生運用所學知識解決實際問題的能力為主要任務的一種課型。這與我們教研組以前提出的復習課要進行“知識梳理、查漏補缺、鞏固提升”是基本一致的。本節課的流程也是“知識梳理、查漏補缺、鞏固提升”這樣三步驟。
一節課下來,通過討論和自己的進一步思考,覺得還是有一些不足。
1.課堂不夠開放。
開放的數學課堂已經成為當前數學課堂教學形式的主流。現在的數學課堂教學應充分關注學生的學習情感和學習體驗。在復習課的教學中,應給學生提供充分的“自我回憶”、“自我整理”、“質疑問難”、“自我反思”的空間。這與傳統的復習課中,教師將事先準備好的系統的知識結構圖呈現在學生面前,供學生復習是有很大區別的。
這節課中,學生的自我知識的整理,還可以進一步放手。可以完全由學生自己來完成,一個人完成不了的,可以小組合作完成。只有通過真正的自我整理,學生才會形成清晰的知識結構。
在回憶了知識點之后,還可以設計這樣一道開放題:請你從7、14、21、25、35這列數中找出與眾不同的一個,并說明理由。這樣可以充分激起學生的知識儲備,靈活主動地運用知識解決問題。
2.學生的自我評價和反思還不夠。
讓學生對復習的結果進行評價與反饋。教育心理學十分重視教學評價與反饋,認為通過教學評價給予學生一種成功的體驗或緊迫感,從而強化或激勵學生好好學習,并進行及時的反饋和調控,改進學習方法。老師可以這樣提問促進學生反思:你認為哪些地方是容易搞錯的?或者說你需要提醒大家注意哪些問題?
倍數與因數教學設計13
一、教學背景分析:
教材分析因數和倍數是人教版第十冊第二單元的起始課。教材不再以“整除”概念為基礎引出因數與倍數,而是利用擺小飛機隊形這一直觀教學的基礎上,借助整除的模式na=b,直接引出因數和倍數的概念并理解這二個概念,對于后面的學習起到承上啟下的重要作用。
學情分析學生對“因數和倍數”的名稱并不陌生。學生可能會將乘法和除孤立開來,不能溝通聯系,往往認為“乘法中有因數,除法中有倍數”。學生還有可能受前認知的干撓,往往把倍數認識是二年級的“倍的認識”,而不是“整除條件下的倍數”。學生對整除中因數和倍數的認識是模糊的,甚至是混亂的。教學目標通過動手操作,認識和理解“倍數和因數”,發現并掌握尋找一個數的因數和倍數的方法,體會一個數的倍數和因數之間的相互依存關系。經歷“活動建構”和“自主探究”的過程,發展學生的數感,培養思維的有序性。讓學生體會數學的奇妙、有趣,產生對數學的好奇心。教學重點:
理解因數和倍數的意義以及相互依存的關系。掌握找一個因數和倍數的方法。教學難點:
理解因數和倍數的意義以及相互依存的關系。
教學過程:
依托原有認知活動中建構概念。
1、建立因數和倍數的概念。
五年級4個班同學參加國慶活動分班訓練。每班要排成4路縱隊,每隊人數相等,可以怎樣站隊呢?這4個班的人數分別是:18、20、24、28人。(用圓片擺一擺)
(1)匯報學生擺一擺的情況和結果。
(2)你能試著說一說20、24、28與4之間有什么關系嗎?
生:20是4的倍數,24是4的倍數,28是4的倍數,4是20的因數,4是24的因數,4是28的因數。
為什么不選18呢?生:18不是4的倍數,4也不是18的因數。
(4)18是誰的倍數呢?用圓圈代表一個人,這18個人可以怎樣站隊?請你擺一擺,小組長匯報。師板書:
18×1=18 2 ×9=18 3×6=18
18=18×1=2×9=3×6
18÷1=18 18÷2=9 18÷3=6
師:你能說出18與1、2、3、6、9、18有什么關系嗎?
生:1、2、3、6、9、18是18的因數,18是1、2、3、6、9、18的倍數,它們是互相依存的關系。
師:判斷下列算式,哪個算式是整除,哪個不是,誰是誰的因數,誰是誰的倍數?
(1)12×0.5=6
(2)24÷0.6=4
(3)28×2=56
(4)28÷7=4
(5)32÷6=5……2
(6)1.8÷0.9=2
(7)4×3=12
(8)3×0=0
生:(3)、(4)、(7)是整除,其余的不是整除。2和28是56的因數,56是2和28的倍數……
師:其余的為什么不是呢?
生:它們有的是小數和0或不能除盡,整除只研究非零整數。
鞏固因數和倍數的認識:從3、5、18、36、20中任選兩個數,說一說誰是誰的因數,誰是誰的倍數?(為了處理因數和倍數相互依存關系)
自主探究,在對話中生成方法。1、20、24、28除了4以外,還有其他的因數嗎?
生:有。20的因數有:1、2、4、5、10、20。
24的因數有:1、2、3、4、6、8、12、24。
28的因數有:1、2、4、7、14、28。
2、20、24、28都是4的倍數,4還有其他的倍數嗎?
生:有。4的倍數是:4、8、12、16……
因數和倍數有什么特征?生:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數的倍數的個數是無限的,最小的`倍數是它本身,沒有最大的倍數,因為自然數的個數是無限的。(師板書。)
反饋鞏固練習,應用中體會奧秘。基本練習。
(1)5是因數,30是倍數。()
一個數的倍數一定比它的因數大。()下列哪個算式中的數具有因數和倍數的關系()3+6=9 4×3=12 2.6÷2=1.3 20—14=6
下面各數中,因數的個數最多的是()19 22 60 85 97 100
拓展練習。找出6、28的因數及各自的倍數,根據因數的情況介紹完美數,體會人類對數的探索無止盡。找出220、284的因數,認識相親數,感受數與數之間的美妙規律。課堂總結,梳理知識,提升認識。師:這節課你們有什么收獲?你對數有了哪些新的認識?
板書設計:
20÷4=5 24÷4=6 28÷4=7 20、24、28是4的倍數
4 ×5=20 4 ×6=24 4×7=28 4是20、24、28的因數
18×1=18 2×9=18 3×6=18
18=18×1=2×9=3×6
18÷1=18 18÷2=9 18÷3=6
一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數,因為自然數的個數是無限的。
6的因數:1、2、3、6。 6=1+2+3 6是完美數
教學反思讓學生在動手操作中,初步認識概念。以往的教學,在揭示概念的過程中,大多是以嚴格的定義形式,以教授為主,在大量反復練習中加深對概念的理解。本設計突出了在揭示概念的過程中,幫助學生借助直觀操作建立模型,理解概念。體會因數與倍數的關系。
讓學生在對比交流中,深化理解概念。教材中只是用12個小飛機拼擺來幫助學生認識整除,因數和倍數感覺淺顯。本設計對教材進行了合理的改編,讓學生對4個數據(18 20 24 28)的拼擺認識因數和倍數,加深對“整除、因數和倍數”的理解。在18與其他數據的對比中,深化理解什么是整除。
讓學生在拓展訓練中,體會知識的奧秘。這節課對“因數與倍數”理解的基礎上,通過拓展練習找因數,加強了基礎技能的訓練,又讓學生感受到數與數之間的神奇,激發起學生對數學的好奇。感受到知識的奧秘,產生繼續學習的愿望。
倍數與因數教學設計14
教學內容:
蘇教版小學數學四年級(下冊)第70-72頁。
教學目標:
1、使學生結合乘、除法運算初步認識倍數和因數的含義,探索求一個數的倍數和因數的方法。
2、使學生在探索的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
3、增強學生學習數學的興趣,感受到成功的快樂。
教學重點:
理解倍數和因數的含義,探索并掌握找一個數的倍數和因數的方法。
教學難點:
理解倍數和因數的含義及倍數和因數的相互依存關系。
教學準備:
學生:每人準備12個同樣大小的正方形。教師:課件
教學過程:
一、認識倍數和因數
1、提出活動要求:每一桌的同學合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來。看看哪桌的同學最快完成。
2分組操作活動,師巡視指導。
3、指名匯報,出示課件,全班交流。匯報時是引導學生根據“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。
4、教學“倍數”和“因數”的概念。
(1)結合4×3=12,說明12是4的倍數,12也是3的倍數,4和3都是12的因數。并板書。
(2)齊讀這三句話,板書課題:倍數和因數
(3)指名看式子說。
(4)請學生根據6×2=12和12×1=12兩道算式,照樣子說
一說哪個數是哪個數的倍數?哪個數是哪個數的因數?
追問:如果說12是倍數,3是因數,可以嗎?為什么?
明確:倍數和因數都是指兩個數之間的關系,是相互依存的。
教師指出閱讀底注明確:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的自然數。不是0的自然數,0要考慮嗎?那從什么數開始。如1、2、3、4、5、6、7、8、9…….在小數和分數等其他數中就也沒有倍數和因數的說法了。(可根據具體的算式說明,如0×3=0,1.5×2=3。)
(5)練習:“想想做做”第1題。每位同學都各選一個乘法算式同桌之間互相說一說,
三、探索找倍數和因數的方法
1、探索找一個數的倍數的方法
(1)提出問題:什么樣的數會是3的倍數呢?明確:3的倍數是3與一個數相乘的積。你能找到多少個3的倍數?先讓學生獨立思考,再組織交流。
(2)啟發:誰能按從小到大的順序有條理的說出3的倍數?根據什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數。同時板書:
3×1=(3)3×2=(6)……
追問:能把3的倍數全部說完嗎?應該怎樣表示3的倍數有哪些呢?
根據學生的回答課件演示:3的倍數有3、6、9、12、15……
(3)完成后面的試一試。提醒學生注意有序的思考,并規范的表示出結果。
(4)一個數的倍數的特點。
提問:觀察上面的幾個例子,你發現一個數的倍數有什么特點?根據學生的交流歸納:一個數的倍數中,最小的是它的本身,沒有最大的倍數,一個數的倍數的個數是無限的。
提問:現在你能很快說出6的.最小倍數是多少嗎?10呢?
2、探索找一個數的因數的方法
(1)提出問題:什么樣的數是36的因數?
學生舉例說明。明確:如果有兩個數相乘的積是36,那么這兩個數都是36的因數。
板書()×()=36
(2)提問:你能找出36的所有因數嗎?啟發:要做到不重復,不遺漏,怎樣才能有條理地找出36的所有因數?
學生試著在練習本上列式找出。
(3)學生匯報交流,根據學生的回答課件演示。
(4)進一步啟發:我們知道除法是乘法的逆運算,根據除法算式,也可以找一個數的因數。。根據36÷1=36可以找到1和36……
請同學們看書71頁,完成書上的填空。
(5)完成“試一試”。提醒學生有序的思考,做到不重復,不遺漏。
學生匯報,說說你是怎樣找的。
(6)觀察發現
提問:觀察上面的例子,你發現一個數的因數有什么特點?
小結:一個數因數的個數是有限的,一個數的因數中,最小的是1,最大的是它本身。
提問:現在你能很快說出18的最小因數和最大因數是多少嗎?25呢?
四、鞏固練習
1、“想想做做”第2題。
組織學生讀題,理解題意。表中每欄的應付元數各是怎樣算出來的?他們都是4的什么數?你還能說出4的哪些倍數?能把4的倍數全部說完嗎?
2、“想想做做”第3題。
組織學生讀題,理解題意。表中每欄的每排人數是各怎樣算出來的?排數和每排人數都是24的什么數?
五、全課總結
這節課你學會了什么?
倍數與因數教學設計15
復習內容:公因數和公倍數。
復習目標:通過復習,能又快又準地找出兩個數的最大公因數和最小公倍數,并能運用所學知識解決實際問題。
復習重點:又快又準的找出兩個數的最大公因數和最小公倍數。
復習難點:運用所學知識熟練的解決生活中的數學問題。
復習過程:
一、談話引出課題
1、這一單元,我們學習了什么?(生答)
今天我們一起復習公因數和公倍數。(揭題)
2、現在,你知道了哪些有關公因數和公倍數的知識?(小組討論→全班交流)
二、解答實際問題
1、我們已經學會了好幾種求最大公因數和最小公倍數的方法,你最喜歡哪種方法,為什么?(又快又準)
下面我們就用短除法求最大公因數和最小公倍數(24和36)。
2、談話:有些最大公因數和最小公倍數一眼就能看出,你想試一試嗎?
找出每組數的最大公因數和最小公倍數。
8和16()27和9()
13和39()51和17()
問:你們為什么這么快就能找出它們的最大公因數和最小公倍數?
3、找出下面每組數的最大公因數和最小公倍數
16和1()5和7()
11和8()9和10()
問:通過練習,我們又發現了什么?
4、你能說出下面每個分數中分子與分母的最大公因數嗎?
14/21()35/45()22/33()80/90()
5、說一說每組分數中兩個分母的.最小公倍數。
2/3和4/73/5和9/105/9和5/67/8和11/12
6、判斷:
1、3和5沒有公因數。()
2、a = 4b(a、b都是整數)a和b的最大公因數是b。()
3、30是3和10的倍數。()
4、兩個數的最小公倍數一定比這兩個數都大。()
5、如果兩個數的最大公因數是1,那么最小公倍數一定是它們的乘積。()
三、解決生活問題
談話:我們學習數學,就是為了用數學方法解決生活中的問題,現在老師帶來了一些生活中的數學問題,大家想挑戰嗎?
1、長途汽車站每隔8分鐘向a地發一輛車,每隔10分鐘向b地發一輛車,這兩趟車早上7:00同時發車,第二次同時發車是什么時候?
問:解決這個問題,實際上就是求什么?
2、一籃雞蛋,5個5個地數,6個6個地數,都少了2個,這籃雞蛋至少多少個?
3、有一種長方形地磚,長6dm,寬4dm,至少取多少塊才能拼成一個正方形?
4、有兩根長分別是32cm和40cm的木條,把它們鋸成同樣長的小段(每小段都是整厘米數),并沒有剩余,每小段最長是多少?
問:讀了這道題后,你認為哪些地方要引起大家注意?
5、把一塊長20cm寬15cm的長方形紅布,剪成邊長是整厘米數且面積盡可能大的相等的正方形,一共可以剪多少個?
6、思考題:
李老師把25本練習本和15支鉛筆,分別平均分給一個組的同學,結果練習本多了1本,鉛筆少了1支,你知道這組最多有幾個同學嗎?
四、交流新的收獲?
五、作業:完成《補充習題》
【倍數與因數教學設計】相關文章:
倍數和因數教學設計08-01
因數與倍數教學設計人教版07-06
因數與倍數的教材分析03-04
聽《倍數和因數》有感04-30
公因數教學設計05-14
《找因數》教學設計12-12
3的倍數教學設計05-10
《公倍數》教學設計04-17
《因數和倍數》評課稿03-25